### Refine

#### Keywords

- Optimierung (2)
- Allokation (1)
- Discrete optimization (1)
- Maschinelles Lernen (1)
- Mixed-integer optimization (1)
- Multilineare Algebra (1)
- Nichtlineare Optimierung (1)
- Numerische Mathematik (1)
- Prediction (1)
- Regression (1)

#### Institute

- Fachbereich 4 (2)
- Mathematik (1)

In this thesis, we aim to study the sampling allocation problem of survey statistics under uncertainty. We know that the stratum specific variances are generally not known precisely and we have no information about the distribution of uncertainty. The cost of interviewing each person in a stratum is also a highly uncertain parameter as sometimes people are unavailable for the interview. We propose robust allocations to deal with the uncertainty in both stratum specific variances and costs. However, in real life situations, we can face such cases when only one of the variances or costs is uncertain. So we propose three different robust formulations representing these different cases. To the best of our knowledge robust allocation in the sampling allocation problem has not been considered so far in any research.
The first robust formulation for linear problems was proposed by Soyster (1973). Bertsimas and Sim (2004) proposed a less conservative robust formulation for linear problems. We study these formulations and extend them for the nonlinear sampling allocation problem. It is very unlikely to happen that all of the stratum specific variances and costs are uncertain. So the robust formulations are in such a way that we can select how many strata are uncertain which we refer to as the level of uncertainty. We prove that an upper bound on the probability of violation of the nonlinear constraints can be calculated before solving the robust optimization problem. We consider various kinds of datasets and compute robust allocations. We perform multiple experiments to check the quality of the robust allocations and compare them with the existing allocation techniques.

Competitive analysis is a well known method for analyzing online algorithms.
Two online optimization problems, the scheduling problems and the list accessing problems, are considered in the thesis of Yida Zhu in the respect of this method.
For both problems, several existing online and offline algorithms are studied. Their performances are compared with the performances of corresponding offline optimal algorithms.
In particular, the list accessing algorithm BIT is carefully reviewed.
The classical proof of its worst case performance get simplified by adapting the knowledge about the optimal offline algorithm.
With regard to average case analysis, a new closed formula is developed to determine the performance of BIT on specific class of instances.
All algorithm considered in this thesis are also implemented in Julia.
Their empirical performances are studied and compared with each other directly.

We consider a linear regression model for which we assume that some of the observed variables are irrelevant for the prediction. Including the wrong variables in the statistical model can either lead to the problem of having too little information to properly estimate the statistic of interest, or having too much information and consequently describing fictitious connections. This thesis considers discrete optimization to conduct a variable selection. In light of this, the subset selection regression method is analyzed. The approach gained a lot of interest in recent years due to its promising predictive performance. A major challenge associated with the subset selection regression is the computational difficulty. In this thesis, we propose several improvements for the efficiency of the method. Novel bounds on the coefficients of the subset selection regression are developed, which help to tighten the relaxation of the associated mixed-integer program, which relies on a Big-M formulation. Moreover, a novel mixed-integer linear formulation for the subset selection regression based on a bilevel optimization reformulation is proposed. Finally, it is shown that the perspective formulation of the subset selection regression is equivalent to a state-of-the-art binary formulation. We use this insight to develop novel bounds for the subset selection regression problem, which show to be highly effective in combination with the proposed linear formulation.
In the second part of this thesis, we examine the statistical conception of the subset selection regression and conclude that it is misaligned with its intention. The subset selection regression uses the training error to decide on which variables to select. The approach conducts the validation on the training data, which oftentimes is not a good estimate of the prediction error. Hence, it requires a predetermined cardinality bound. Instead, we propose to select variables with respect to the cross-validation value. The process is formulated as a mixed-integer program with the sparsity becoming subject of the optimization. Usually, a cross-validation is used to select the best model out of a few options. With the proposed program the best model out of all possible models is selected. Since the cross-validation is a much better estimate of the prediction error, the model can select the best sparsity itself.
The thesis is concluded with an extensive simulation study which provides evidence that discrete optimization can be used to produce highly valuable predictive models with the cross-validation subset selection regression almost always producing the best results.

In this thesis, we consider the solution of high-dimensional optimization problems with an underlying low-rank tensor structure. Due to the exponentially increasing computational complexity in the number of dimensionsâ€”the so-called curse of dimensionalityâ€”they present a considerable computational challenge and become infeasible even for moderate problem sizes.
Multilinear algebra and tensor numerical methods have a wide range of applications in the fields of data science and scientific computing. Due to the typically large problem sizes in practical settings, efficient methods, which exploit low-rank structures, are essential. In this thesis, we consider an application each in both of these fields.
Tensor completion, or imputation of unknown values in partially known multiway data is an important problem, which appears in statistics, mathematical imaging science and data science. Under the assumption of redundancy in the underlying data, this is a well-defined problem and methods of mathematical optimization can be applied to it.
Due to the fact that tensors of fixed rank form a Riemannian submanifold of the ambient high-dimensional tensor space, Riemannian optimization is a natural framework for these problems, which is both mathematically rigorous and computationally efficient.
We present a novel Riemannian trust-region scheme, which compares favourably with the state of the art on selected application cases and outperforms known methods on some test problems.
Optimization problems governed by partial differential equations form an area of scientific computing which has applications in a variety of areas, ranging from physics to financial mathematics. Due to the inherent high dimensionality of optimization problems arising from discretized differential equations, these problems present computational challenges, especially in the case of three or more dimensions. An even more challenging class of optimization problems has operators of integral instead of differential type in the constraint. These operators are nonlocal, and therefore lead to large, dense discrete systems of equations. We present a novel solution method, based on separation of spatial dimensions and provably low-rank approximation of the nonlocal operator. Our approach allows the solution of multidimensional problems with a complexity which is only slightly larger than linear in the univariate grid size; this improves the state of the art for a particular test problem problem by at least two orders of magnitude.