Refine
Keywords
- Optimierung (2)
- Branch-and-Bound-Methode (1)
- Energiemarkt (1)
- Energy markets (1)
- Equilibrium computation (1)
- Existence (1)
- Gemischt-ganzzahlige Optimierung (1)
- Gleichgewichtstheorie (1)
- Nichtlineare Optimierung (1)
- Penalty-Methode (1)
Due to the transition towards climate neutrality, energy markets are rapidly evolving. New technologies are developed that allow electricity from renewable energy sources to be stored or to be converted into other energy commodities. As a consequence, new players enter the markets and existing players gain more importance. Market equilibrium problems are capable of capturing these changes and therefore enable us to answer contemporary research questions with regard to energy market design and climate policy.
This cumulative dissertation is devoted to the study of different market equilibrium problems that address such emerging aspects in liberalized energy markets. In the first part, we review a well-studied competitive equilibrium model for energy commodity markets and extend this model by sector coupling, by temporal coupling, and by a more detailed representation of physical laws and technical requirements. Moreover, we summarize our main contributions of the last years with respect to analyzing the market equilibria of the resulting equilibrium problems.
For the extension regarding sector coupling, we derive sufficient conditions for ensuring uniqueness of the short-run equilibrium a priori and for verifying uniqueness of the long-run equilibrium a posteriori. Furthermore, we present illustrative examples that each of the derived conditions is indeed necessary to guarantee uniqueness in general.
For the extension regarding temporal coupling, we provide sufficient conditions for ensuring uniqueness of demand and production a priori. These conditions also imply uniqueness of the short-run equilibrium in case of a single storage operator. However, in case of multiple storage operators, examples illustrate that charging and discharging decisions are not unique in general. We conclude the equilibrium analysis with an a posteriori criterion for verifying uniqueness of a given short-run equilibrium. Since the computation of equilibria is much more challenging due to the temporal coupling, we shortly review why a tailored parallel and distributed alternating direction method of multipliers enables to efficiently compute market equilibria.
For the extension regarding physical laws and technical requirements, we show that, in nonconvex settings, existence of an equilibrium is not guaranteed and that the fundamental welfare theorems therefore fail to hold. In addition, we argue that the welfare theorems can be re-established in a market design in which the system operator is committed to a welfare objective. For the case of a profit-maximizing system operator, we propose an algorithm that indicates existence of an equilibrium and that computes an equilibrium in the case of existence. Based on well-known instances from the literature on the gas and electricity sector, we demonstrate the broad applicability of our algorithm. Our computational results suggest that an equilibrium often exists for an application involving nonconvex but continuous stationary gas physics. In turn, integralities introduced due to the switchability of DC lines in DC electricity networks lead to many instances without an equilibrium. Finally, we state sufficient conditions under which the gas application has a unique equilibrium and the line switching application has finitely many.
In the second part, all preprints belonging to this cumulative dissertation are provided. These preprints, as well as two journal articles to which the author of this thesis contributed, are referenced within the extended summary in the first part and contain more details.
Die Dissertation beschäftigt sich mit einer neuartigen Art von Branch-and-Bound Algorithmen, deren Unterschied zu klassischen Branch-and-Bound Algorithmen darin besteht, dass
das Branching durch die Addition von nicht-negativen Straftermen zur Zielfunktion erfolgt
anstatt durch das Hinzufügen weiterer Nebenbedingungen. Die Arbeit zeigt die theoretische Korrektheit des Algorithmusprinzips für verschiedene allgemeine Klassen von Problemen und evaluiert die Methode für verschiedene konkrete Problemklassen. Für diese Problemklassen, genauer Monotone und Nicht-Monotone Gemischtganzzahlige Lineare Komplementaritätsprobleme und Gemischtganzzahlige Lineare Probleme, präsentiert die Arbeit
verschiedene problemspezifische Verbesserungsmöglichkeiten und evaluiert diese numerisch.
Weiterhin vergleicht die Arbeit die neue Methode mit verschiedenen Benchmark-Methoden
mit größtenteils guten Ergebnissen und gibt einen Ausblick auf weitere Anwendungsgebiete
und zu beantwortende Forschungsfragen.