Refine
Keywords
- Schätzung (4)
- Erhebungsverfahren (3)
- Stichprobe (3)
- survey statistics (3)
- Haushalt (2)
- Unternehmen (2)
- small area estimation (2)
- Amtliche Statistik (1)
- Calibration (1)
- Complex survey data (1)
Institute
- Fachbereich 4 (9) (remove)
Die vorgelegte Dissertation trägt den Titel Regularization Methods for Statistical Modelling in Small Area Estimation. In ihr wird die Verwendung regularisierter Regressionstechniken zur geographisch oder kontextuell hochauflösenden Schätzung aggregatspezifischer Kennzahlen auf Basis kleiner Stichproben studiert. Letzteres wird in der Fachliteratur häufig unter dem Begriff Small Area Estimation betrachtet. Der Kern der Arbeit besteht darin die Effekte von regularisierter Parameterschätzung in Regressionsmodellen, welche gängiger Weise für Small Area Estimation verwendet werden, zu analysieren. Dabei erfolgt die Analyse primär auf theoretischer Ebene, indem die statistischen Eigenschaften dieser Schätzverfahren mathematisch charakterisiert und bewiesen werden. Darüber hinaus werden die Ergebnisse durch numerische Simulationen veranschaulicht, und vor dem Hintergrund empirischer Anwendungen kritisch verortet. Die Dissertation ist in drei Bereiche gegliedert. Jeder Bereich behandelt ein individuelles methodisches Problem im Kontext von Small Area Estimation, welches durch die Verwendung regularisierter Schätzverfahren gelöst werden kann. Im Folgenden wird jedes Problem kurz vorgestellt und im Zuge dessen der Nutzen von Regularisierung erläutert.
Das erste Problem ist Small Area Estimation in der Gegenwart unbeobachteter Messfehler. In Regressionsmodellen werden typischerweise endogene Variablen auf Basis statistisch verwandter exogener Variablen beschrieben. Für eine solche Beschreibung wird ein funktionaler Zusammenhang zwischen den Variablen postuliert, welcher durch ein Set von Modellparametern charakterisiert ist. Dieses Set muss auf Basis von beobachteten Realisationen der jeweiligen Variablen geschätzt werden. Sind die Beobachtungen jedoch durch Messfehler verfälscht, dann liefert der Schätzprozess verzerrte Ergebnisse. Wird anschließend Small Area Estimation betrieben, so sind die geschätzten Kennzahlen nicht verlässlich. In der Fachliteratur existieren hierfür methodische Anpassungen, welche in der Regel aber restriktive Annahmen hinsichtlich der Messfehlerverteilung benötigen. Im Rahmen der Dissertation wird bewiesen, dass Regularisierung in diesem Kontext einer gegen Messfehler robusten Schätzung entspricht - und zwar ungeachtet der Messfehlerverteilung. Diese Äquivalenz wird anschließend verwendet, um robuste Varianten bekannter Small Area Modelle herzuleiten. Für jedes Modell wird ein Algorithmus zur robusten Parameterschätzung konstruiert. Darüber hinaus wird ein neuer Ansatz entwickelt, welcher die Unsicherheit von Small Area Schätzwerten in der Gegenwart unbeobachteter Messfehler quantifiziert. Es wird zusätzlich gezeigt, dass diese Form der robusten Schätzung die wünschenswerte Eigenschaft der statistischen Konsistenz aufweist.
Das zweite Problem ist Small Area Estimation anhand von Datensätzen, welche Hilfsvariablen mit unterschiedlicher Auflösung enthalten. Regressionsmodelle für Small Area Estimation werden normalerweise entweder für personenbezogene Beobachtungen (Unit-Level), oder für aggregatsbezogene Beobachtungen (Area-Level) spezifiziert. Doch vor dem Hintergrund der stetig wachsenden Datenverfügbarkeit gibt es immer häufiger Situationen, in welchen Daten auf beiden Ebenen vorliegen. Dies beinhaltet ein großes Potenzial für Small Area Estimation, da somit neue Multi-Level Modelle mit großem Erklärungsgehalt konstruiert werden können. Allerdings ist die Verbindung der Ebenen aus methodischer Sicht kompliziert. Zentrale Schritte des Inferenzschlusses, wie etwa Variablenselektion und Parameterschätzung, müssen auf beiden Levels gleichzeitig durchgeführt werden. Hierfür existieren in der Fachliteratur kaum allgemein anwendbare Methoden. In der Dissertation wird gezeigt, dass die Verwendung ebenenspezifischer Regularisierungsterme in der Modellierung diese Probleme löst. Es wird ein neuer Algorithmus für stochastischen Gradientenabstieg zur Parameterschätzung entwickelt, welcher die Informationen von allen Ebenen effizient unter adaptiver Regularisierung nutzt. Darüber hinaus werden parametrische Verfahren zur Abschätzung der Unsicherheit für Schätzwerte vorgestellt, welche durch dieses Verfahren erzeugt wurden. Daran anknüpfend wird bewiesen, dass der entwickelte Ansatz bei adäquatem Regularisierungsterm sowohl in der Schätzung als auch in der Variablenselektion konsistent ist.
Das dritte Problem ist Small Area Estimation von Anteilswerten unter starken verteilungsbezogenen Abhängigkeiten innerhalb der Kovariaten. Solche Abhängigkeiten liegen vor, wenn eine exogene Variable durch eine lineare Transformation einer anderen exogenen Variablen darstellbar ist (Multikollinearität). In der Fachliteratur werden hierunter aber auch Situationen verstanden, in welchen mehrere Kovariate stark korreliert sind (Quasi-Multikollinearität). Wird auf einer solchen Datenbasis ein Regressionsmodell spezifiziert, dann können die individuellen Beiträge der exogenen Variablen zur funktionalen Beschreibung der endogenen Variablen nicht identifiziert werden. Die Parameterschätzung ist demnach mit großer Unsicherheit verbunden und resultierende Small Area Schätzwerte sind ungenau. Der Effekt ist besonders stark, wenn die zu modellierende Größe nicht-linear ist, wie etwa ein Anteilswert. Dies rührt daher, dass die zugrundeliegende Likelihood-Funktion nicht mehr geschlossen darstellbar ist und approximiert werden muss. Im Rahmen der Dissertation wird gezeigt, dass die Verwendung einer L2-Regularisierung den Schätzprozess in diesem Kontext signifikant stabilisiert. Am Beispiel von zwei nicht-linearen Small Area Modellen wird ein neuer Algorithmus entwickelt, welche den bereits bekannten Quasi-Likelihood Ansatz (basierend auf der Laplace-Approximation) durch Regularisierung erweitert und verbessert. Zusätzlich werden parametrische Verfahren zur Unsicherheitsmessung für auf diese Weise erhaltene Schätzwerte beschrieben.
Vor dem Hintergrund der theoretischen und numerischen Ergebnisse wird in der Dissertation demonstriert, dass Regularisierungsmethoden eine wertvolle Ergänzung der Fachliteratur für Small Area Estimation darstellen. Die hier entwickelten Verfahren sind robust und vielseitig einsetzbar, was sie zu hilfreichen Werkzeugen der empirischen Datenanalyse macht.
The Eurosystem's Household Finance and Consumption Survey (HFCS) collects micro data on private households' balance sheets, income and consumption. It is a stylised fact that wealth is unequally distributed and that the wealthiest own a large share of total wealth. For sample surveys which aim at measuring wealth and its distribution, this is a considerable problem. To overcome it, some of the country surveys under the HFCS umbrella try to sample a disproportionately large share of households that are likely to be wealthy, a technique referred to as oversampling. Ignoring such types of complex survey designs in the estimation of regression models can lead to severe problems. This thesis first illustrates such problems using data from the first wave of the HFCS and canonical regression models from the field of household finance and gives a first guideline for HFCS data users regarding the use of replicate weight sets for variance estimation using a variant of the bootstrap. A further investigation of the issue necessitates a design-based Monte Carlo simulation study. To this end, the already existing large close-to-reality synthetic simulation population AMELIA is extended with synthetic wealth data. We discuss different approaches to the generation of synthetic micro data in the context of the extension of a synthetic simulation population that was originally based on a different data source. We propose an additional approach that is suitable for the generation of highly skewed synthetic micro data in such a setting using a multiply-imputed survey data set. After a description of the survey designs employed in the first wave of the HFCS, we then construct new survey designs for AMELIA that share core features of the HFCS survey designs. A design-based Monte Carlo simulation study shows that while more conservative approaches to oversampling do not pose problems for the estimation of regression models if sampling weights are properly accounted for, the same does not necessarily hold for more extreme oversampling approaches. This issue should be further analysed in future research.
Official business surveys form the basis for national and regional business statistics and are thus of great importance for analysing the state and performance of the economy. However, both the heterogeneity of business data and their high dynamics pose a particular challenge to the feasibility of sampling and the quality of the resulting estimates. A widely used sampling frame for creating the design of an official business survey is an extract from an official business register. However, if this frame does not accurately represent the target population, frame errors arise. Amplified by the heterogeneity and dynamics of business populations, these errors can significantly affect the estimation quality and lead to inefficiencies and biases. This dissertation therefore deals with design-based methods for optimising business surveys with respect to different types of frame errors.
First, methods for adjusting the sampling design of business surveys are addressed. These approaches integrate auxiliary information about the expected structures of frame errors into the sampling design. The aim is to increase the number of sampled businesses that are subject to frame errors. The element-specific frame error probability is estimated based on auxiliary information about frame errors observed in previous samples. The approaches discussed consider different types of frame errors and can be incorporated into predefined designs with fixed strata.
As the second main pillar of this work, methods for adjusting weights to correct for frame errors during estimation are developed and investigated. As a result of frame errors, the assumptions under which the original design weights were determined based on the sampling design no longer hold. The developed methods correct the design weights taking into account the errors identified for sampled elements. Case-number-based reweighting approaches, on the one hand, attempt to reconstruct the unknown size of the individual strata in the target population. In the context of weight smoothing methods, on the other hand, design weights are modelled and smoothed as a function of target or auxiliary variables. This serves to avoid inefficiencies in the estimation due to highly scattering weights or weak correlations between weights and target variables. In addition, possibilities of correcting frame errors by calibration weighting are elaborated. Especially when the sampling frame shows over- and/or undercoverage, the inclusion of external auxiliary information can provide a significant improvement of the estimation quality. For those methods whose quality cannot be measured using standard procedures, a procedure for estimating the variance based on a rescaling bootstrap is proposed. This enables an assessment of the estimation quality when using the methods in practice.
In the context of two extensive simulation studies, the methods presented in this dissertation are evaluated and compared with each other. First, in the environment of an experimental simulation, it is assessed which approaches are particularly suitable with regard to different data situations. In a second simulation study, which is based on the structural survey in the services sector, the applicability of the methods in practice is evaluated under realistic conditions.
Survey data can be viewed as incomplete or partially missing from a variety of perspectives and there are different ways of dealing with this kind of data in the prediction and the estimation of economic quantities. In this thesis, we present two selected research contexts in which the prediction or estimation of economic quantities is examined under incomplete survey data.
These contexts are first the investigation of composite estimators in the German Microcensus (Chapters 3 and 4) and second extensions of multivariate Fay-Herriot (MFH) models (Chapters 5 and 6), which are applied to small area problems.
Composite estimators are estimation methods that take into account the sample overlap in rotating panel surveys such as the German Microcensus in order to stabilise the estimation of the statistics of interest (e.g. employment statistics). Due to the partial sample overlaps, information from previous samples is only available for some of the respondents, so the data are partially missing.
MFH models are model-based estimation methods that work with aggregated survey data in order to obtain more precise estimation results for small area problems compared to classical estimation methods. In these models, several variables of interest are modelled simultaneously. The survey estimates of these variables, which are used as input in the MFH models, are often partially missing. If the domains of interest are not explicitly accounted for in a sampling design, the sizes of the samples allocated to them can, by chance, be small. As a result, it can happen that either no estimates can be calculated at all or that the estimated values are not published by statistical offices because their variances are too large.