Refine
Keywords
- Gestaltoptimierung (2)
- Adjoint Methods (1)
- Analysis (1)
- Branching Diffusion (1)
- Coastal Erosion (1)
- Common Noise (1)
- Differentialgleichung (1)
- Diffusionsprozess (1)
- Discrete-Time Impulse Control (1)
- Diskretisierung (1)
Sample surveys are a widely used and cost effective tool to gain information about a population under consideration. Nowadays, there is an increasing demand not only for information on the population level but also on the level of subpopulations. For some of these subpopulations of interest, however, very small subsample sizes might occur such that the application of traditional estimation methods is not expedient. In order to provide reliable information also for those so called small areas, small area estimation (SAE) methods combine auxiliary information and the sample data via a statistical model.
The present thesis deals, among other aspects, with the development of highly flexible and close to reality small area models. For this purpose, the penalized spline method is adequately modified which allows to determine the model parameters via the solution of an unconstrained optimization problem. Due to this optimization framework, the incorporation of shape constraints into the modeling process is achieved in terms of additional linear inequality constraints on the optimization problem. This results in small area estimators that allow for both the utilization of the penalized spline method as a highly flexible modeling technique and the incorporation of arbitrary shape constraints on the underlying P-spline function.
In order to incorporate multiple covariates, a tensor product approach is employed to extend the penalized spline method to multiple input variables. This leads to high-dimensional optimization problems for which naive solution algorithms yield an unjustifiable complexity in terms of runtime and in terms of memory requirements. By exploiting the underlying tensor nature, the present thesis provides adequate computationally efficient solution algorithms for the considered optimization problems and the related memory efficient, i.e. matrix-free, implementations. The crucial point thereby is the (repetitive) application of a matrix-free conjugated gradient method, whose runtime is drastically reduced by a matrx-free multigrid preconditioner.
Nonlocal operators are used in a wide variety of models and applications due to many natural phenomena being driven by nonlocal dynamics. Nonlocal operators are integral operators allowing for interactions between two distinct points in space. The nonlocal models investigated in this thesis involve kernels that are assumed to have a finite range of nonlocal interactions. Kernels of this type are used in nonlocal elasticity and convection-diffusion models as well as finance and image analysis. Also within the mathematical theory they arouse great interest, as they are asymptotically related to fractional and classical differential equations.
The results in this thesis can be grouped according to the following three aspects: modeling and analysis, discretization and optimization.
Mathematical models demonstrate their true usefulness when put into numerical practice. For computational purposes, it is important that the support of the kernel is clearly determined. Therefore nonlocal interactions are typically assumed to occur within an Euclidean ball of finite radius. In this thesis we consider more general interaction sets including norm induced balls as special cases and extend established results about well-posedness and asymptotic limits.
The discretization of integral equations is a challenging endeavor. Especially kernels which are truncated by Euclidean balls require carefully designed quadrature rules for the implementation of efficient finite element codes. In this thesis we investigate the computational benefits of polyhedral interaction sets as well as geometrically approximated interaction sets. In addition to that we outline the computational advantages of sufficiently structured problem settings.
Shape optimization methods have been proven useful for identifying interfaces in models governed by partial differential equations. Here we consider a class of shape optimization problems constrained by nonlocal equations which involve interface-dependent kernels. We derive the shape derivative associated to the nonlocal system model and solve the problem by established numerical techniques.
In this thesis, we consider the solution of high-dimensional optimization problems with an underlying low-rank tensor structure. Due to the exponentially increasing computational complexity in the number of dimensions—the so-called curse of dimensionality—they present a considerable computational challenge and become infeasible even for moderate problem sizes.
Multilinear algebra and tensor numerical methods have a wide range of applications in the fields of data science and scientific computing. Due to the typically large problem sizes in practical settings, efficient methods, which exploit low-rank structures, are essential. In this thesis, we consider an application each in both of these fields.
Tensor completion, or imputation of unknown values in partially known multiway data is an important problem, which appears in statistics, mathematical imaging science and data science. Under the assumption of redundancy in the underlying data, this is a well-defined problem and methods of mathematical optimization can be applied to it.
Due to the fact that tensors of fixed rank form a Riemannian submanifold of the ambient high-dimensional tensor space, Riemannian optimization is a natural framework for these problems, which is both mathematically rigorous and computationally efficient.
We present a novel Riemannian trust-region scheme, which compares favourably with the state of the art on selected application cases and outperforms known methods on some test problems.
Optimization problems governed by partial differential equations form an area of scientific computing which has applications in a variety of areas, ranging from physics to financial mathematics. Due to the inherent high dimensionality of optimization problems arising from discretized differential equations, these problems present computational challenges, especially in the case of three or more dimensions. An even more challenging class of optimization problems has operators of integral instead of differential type in the constraint. These operators are nonlocal, and therefore lead to large, dense discrete systems of equations. We present a novel solution method, based on separation of spatial dimensions and provably low-rank approximation of the nonlocal operator. Our approach allows the solution of multidimensional problems with a complexity which is only slightly larger than linear in the univariate grid size; this improves the state of the art for a particular test problem problem by at least two orders of magnitude.
This thesis addresses three different topics from the fields of mathematical finance, applied probability and stochastic optimal control. Correspondingly, it is subdivided into three independent main chapters each of which approaches a mathematical problem with a suitable notion of a stochastic particle system.
In Chapter 1, we extend the branching diffusion Monte Carlo method of Henry-Labordère et. al. (2019) to the case of parabolic PDEs with mixed local-nonlocal analytic nonlinearities. We investigate branching diffusion representations of classical solutions, and we provide sufficient conditions under which the branching diffusion representation solves the PDE in the viscosity sense. Our theoretical setup directly leads to a Monte Carlo algorithm, whose applicability is showcased in two stylized high-dimensional examples. As our main application, we demonstrate how our methodology can be used to value financial positions with defaultable, systemically important counterparties.
In Chapter 2, we formulate and analyze a mathematical framework for continuous-time mean field games with finitely many states and common noise, including a rigorous probabilistic construction of the state process. The key insight is that we can circumvent the master equation and reduce the mean field equilibrium to a system of forward-backward systems of (random) ordinary differential equations by conditioning on common noise events. We state and prove a corresponding existence theorem, and we illustrate our results in three stylized application examples. In the absence of common noise, our setup reduces to that of Gomes, Mohr and Souza (2013) and Cecchin and Fischer (2020).
In Chapter 3, we present a heuristic approach to tackle stochastic impulse control problems in discrete time. Based on the work of Bensoussan (2008) we reformulate the classical Bellman equation of stochastic optimal control in terms of a discrete-time QVI, and we prove a corresponding verification theorem. Taking the resulting optimal impulse control as a starting point, we devise a self-learning algorithm that estimates the continuation and intervention region of such a problem. Its key features are that it explores the state space of the underlying problem by itself and successively learns the behavior of the optimally controlled state process. For illustration, we apply our algorithm to a classical example problem, and we give an outlook on open questions to be addressed in future research.
Hybrid Modelling in general, describes the combination of at least two different methods to solve one specific task. As far as this work is concerned, Hybrid Models describe an approach to combine sophisticated, well-studied mathematical methods with Deep Neural Networks to solve parameter estimation tasks. To combine these two methods, the data structure of artifi- cially generated acceleration data of an approximate vehicle model, the Quarter-Car-Model, is exploited. Acceleration of individual components within a coupled dynamical system, can be described as a second order ordinary differential equation, including velocity and dis- placement of coupled states, scaled by spring - and damping-coefficient of the system. An appropriate numerical integration scheme can then be used to simulate discrete acceleration profiles of the Quarter-Car-Model with a random variation of the parameters of the system. Given explicit knowledge about the data structure, one can then investigate under which con- ditions it is possible to estimate the parameters of the dynamical system for a set of randomly generated data samples. We test, if Neural Networks are capable to solve parameter estima- tion problems in general, or if they can be used to solve several sub-tasks, which support a state-of-the-art parameter estimation method. Hybrid Models are presented for parameter estimation under uncertainties, including for instance measurement noise or incompleteness of measurements, which combine knowledge about the data structure and several Neural Networks for robust parameter estimation within a dynamical system.
In common shape optimization routines, deformations of the computational mesh
usually suffer from decrease of mesh quality or even destruction of the mesh.
To mitigate this, we propose a theoretical framework using so-called pre-shape
spaces. This gives an opportunity for a unified theory of shape optimization, and of
problems related to parameterization and mesh quality. With this, we stay in the
free-form approach of shape optimization, in contrast to parameterized approaches
that limit possible shapes. The concept of pre-shape derivatives is defined, and
according structure and calculus theorems are derived, which generalize classical
shape optimization and its calculus. Tangential and normal directions are featured
in pre-shape derivatives, in contrast to classical shape derivatives featuring only
normal directions on shapes. Techniques from classical shape optimization and
calculus are shown to carry over to this framework, and are collected in generality
for future reference.
A pre-shape parameterization tracking problem class for mesh quality is in-
troduced, which is solvable by use of pre-shape derivatives. This class allows for
non-uniform user prescribed adaptations of the shape and hold-all domain meshes.
It acts as a regularizer for classical shape objectives. Existence of regularized solu-
tions is guaranteed, and corresponding optimal pre-shapes are shown to correspond
to optimal shapes of the original problem, which additionally achieve the user pre-
scribed parameterization.
We present shape gradient system modifications, which allow simultaneous nu-
merical shape optimization with mesh quality improvement. Further, consistency
of modified pre-shape gradient systems is established. The computational burden
of our approach is limited, since additional solution of possibly larger (non-)linear
systems for regularized shape gradients is not necessary. We implement and com-
pare these pre-shape gradient regularization approaches for a 2D problem, which
is prone to mesh degeneration. As our approach does not depend on the choice of
forms to represent shape gradients, we employ and compare weak linear elasticity
and weak quasilinear p-Laplacian pre-shape gradient representations.
We also introduce a Quasi-Newton-ADM inspired algorithm for mesh quality,
which guarantees sufficient adaption of meshes to user specification during the rou-
tines. It is applicable in addition to simultaneous mesh regularization techniques.
Unrelated to mesh regularization techniques, we consider shape optimization
problems constrained by elliptic variational inequalities of the first kind, so-called
obstacle-type problems. In general, standard necessary optimality conditions cannot
be formulated in a straightforward manner for such semi-smooth shape optimization
problems. Under appropriate assumptions, we prove existence and convergence of
adjoints for smooth regularizations of the VI-constraint. Moreover, we derive shape
derivatives for the regularized problem and prove convergence to a limit object.
Based on this analysis, an efficient optimization algorithm is devised and tested
numerically.
All previous pre-shape regularization techniques are applied to a variational
inequality constrained shape optimization problem, where we also create customized
targets for increased mesh adaptation of changing embedded shapes and active set
boundaries of the constraining variational inequality.
Coastal erosion describes the displacement of land caused by destructive sea waves,
currents or tides. Due to the global climate change and associated phenomena such as
melting polar ice caps and changing current patterns of the oceans, which result in rising
sea levels or increased current velocities, the need for countermeasures is continuously
increasing. Today, major efforts have been made to mitigate these effects using groins,
breakwaters and various other structures.
This thesis will find a novel approach to address this problem by applying shape optimization
on the obstacles. Due to this reason, results of this thesis always contain the
following three distinct aspects:
The selected wave propagation model, i.e. the modeling of wave propagation towards
the coastline, using various wave formulations, ranging from steady to unsteady descriptions,
described from the Lagrangian or Eulerian viewpoint with all its specialties. More
precisely, in the Eulerian setting is first a steady Helmholtz equation in the form of a
scattering problem investigated and followed subsequently by shallow water equations,
in classical form, equipped with porosity, sediment portability and further subtleties.
Secondly, in a Lagrangian framework the Lagrangian shallow water equations form the
center of interest.
The chosen discretization, i.e. dependent on the nature and peculiarity of the constraining
partial differential equation, we choose between finite elements in conjunction
with a continuous Galerkin and discontinuous Galerkin method for investigations in the
Eulerian description. In addition, the Lagrangian viewpoint offers itself for mesh-free,
particle-based discretizations, where smoothed particle hydrodynamics are used.
The method for shape optimization w.r.t. the obstacle’s shape over an appropriate
cost function, constrained by the solution of the selected wave-propagation model. In
this sense, we rely on a differentiate-then-discretize approach for free-form shape optimization
in the Eulerian set-up, and reverse the order in Lagrangian computations.
Differential equations yield solutions that necessarily contain a certain amount of regularity and are based on local interactions. There are various natural phenomena that are not well described by local models. An important class of models that describe long-range interactions are the so-called nonlocal models, which are the subject of this work.
The nonlocal operators considered here are integral operators with a finite range of interaction and the resulting models can be applied to anomalous diffusion, mechanics and multiscale problems.
While the range of applications is vast, the applicability of nonlocal models can face problems such as the high computational and algorithmic complexity of fundamental tasks. One of them is the assembly of finite element discretizations of truncated, nonlocal operators.
The first contribution of this thesis is therefore an openly accessible, documented Python code which allows to compute finite element approximations for nonlocal convection-diffusion problems with truncated interaction horizon.
Another difficulty in the solution of nonlocal problems is that the discrete systems may be ill-conditioned which complicates the application of iterative solvers. Thus, the second contribution of this work is the construction and study of a domain decomposition type solver that is inspired by substructuring methods for differential equations. The numerical results are based on the abstract framework of nonlocal subdivisions which is introduced here and which can serve as a guideline for general nonlocal domain decomposition methods.