## 46F05 Topological linear spaces of test functions, distributions and ultradistributions [See also 46E10, 46E35]

### Refine

#### Document Type

- Doctoral Thesis (1)
- Habilitation (1)

#### Keywords

- Distribution (1)
- Distribution <Funktionalanalysis> (1)
- Funktionalanalysis (1)
- Homologische Algebra (1)
- Hypoelliptischer Operator (1)
- Lineare Funktionalanalysis (1)
- Linearer partieller Differentialoperator (1)
- P-Konvexität für Träger (1)
- P-Konvexität für singuläre Träger (1)
- P-convexity for singular supports (1)

The main topic of this treatise is the solution of two problems from the general theory of linear partial differential equations with constant coefficients. While surjectivity criteria for linear partial differential operators in spaces of smooth functions over an open subset of euclidean space and distributions were proved by B. Malgrange and L. Hörmander in 1955, respectively 1962, concrete evaluation of these criteria is still a highly non-trivial task. In particular, it is well-known that surjectivity in the space of smooth functions over an open subset of euclidean space does not automatically imply surjectivity in the space of distributions. Though, examples for this fact all live in three or higher dimensions. In 1966, F. Trèves conjectured that in the two dimensional setting surjectivity of a linear partial differential operator on the smooth functions indeed implies surjectivity on the space of distributions. An affirmative solution to this problem is presented in this treatise. The second main result solves the so-called problem of (distributional) parameter dependence for solutions of linear partial differential equations with constant coefficients posed by J. Bonet and P. Domanski in 2006. It is shown that, in dimensions three or higher, this problem in general has a negative solution even for hypoelliptic operators. Moreover, it is proved that the two dimensional case is again an exception, because in this setting the problem of parameter dependence always has a positive solution.

The subject of this thesis is a homological approach to the splitting theory of PLS-spaces, i.e. to the question for which topologically exact short sequences 0->X->Y->Z->0 of PLS-spaces X,Y,Z the right-hand map admits a right inverse. We show that the category (PLS) of PLS-spaces and continuous linear maps is an additive category in which every morphism admits a kernel and a cokernel, i.e. it is pre-abelian. However, we also show that it is neither quasi-abelian nor semi-abelian. As a foundation for our homological constructions we show the more general result that every pre-abelian category admits a largest exact structure in the sense of Quillen. In the pre-abelian category (PLS) this exact structure consists precisely of the topologically exact short sequences of PLS-spaces. Using a construction of Ext-functors due to Yoneda, we show that one can define for each PLS-space A and every natural number k the k-th abelian-group valued covariant and contravariant Ext-functors acting on the category (PLS) of PLS-spaces, which induce for every topologically exact short sequence of PLS-spaces a long exact sequence of abelian groups and group morphisms. These functors are studied in detail and we establish a connection between the Ext-functors of PLS-spaces and the Ext-functors for LS-spaces. Through this connection we arrive at an analogue of a result for Fréchet spaces which connects the first derived functor of the projective limit with the first Ext-functor and also gives sufficient conditions for the vanishing of the higher Ext-functors. Finally, we show that Ext^k(E,F) = 0 for a k greater or equal than 1, whenever E is a closed subspace and F is a Hausdorff-quotient of the space of distributions, which generalizes a result of Wengenroth that is itself a generalization of results due to Domanski and Vogt.