## 65C05 Monte Carlo methods

### Refine

#### Keywords

- Adjoint Method (1)
- Adjungierte Differentialgleichung (1)
- Calibration (1)
- Fledermäuse (1)
- Individuenbasiertes Modell (1)
- Monte-Carlo Methods (1)
- Monte-Carlo-Simulation (1)
- Numerische Mathematik (1)
- Optionspreis (1)
- Populationsmodellierung (1)

This thesis is divided into three main parts: The description of the calibration problem, the numerical solution of this problem and the connection to optimal stochastic control problems. Fitting model prices to given market prices leads to an abstract least squares formulation as calibration problem. The corresponding option price can be computed by solving a stochastic differential equation via the Monte-Carlo method which seems to be preferred by most practitioners. Due to the fact that the Monte-Carlo method is expensive in terms of computational effort and requires memory, more sophisticated stochastic predictor-corrector schemes are established in this thesis. The numerical advantage of these predictor-corrector schemes ispresented and discussed. The adjoint method is applied to the calibration. The theoretical advantage of the adjoint method is discussed in detail. It is shown that the computational effort of gradient calculation via the adjoint method is independent of the number of calibration parameters. Numerical results confirm the theoretical results and summarize the computational advantage of the adjoint method. Furthermore, provides the connection to optimal stochastic control problems is proven in this thesis.rn

In this thesis, we present a new approach for estimating the effects of wind turbines for a local bat population. We build an individual based model (IBM) which simulates the movement behaviour of every single bat of the population with its own preferences, foraging behaviour and other species characteristics. This behaviour is normalized by a Monte-Carlo simulation which gives us the average behaviour of the population. The result is an occurrence map of the considered habitat which tells us how often the bat and therefore the considered bat population frequent every region of this habitat. Hence, it is possible to estimate the crossing rate of the position of an existing or potential wind turbine. We compare this individual based approach with a partial differential equation based method. This second approach produces a lower computational effort but, unfortunately, we lose information about the movement trajectories at the same time. Additionally, the PDE based model only gives us a density profile. Hence, we lose the information how often each bat crosses special points in the habitat in one night.rnIn a next step we predict the average number of fatalities for each wind turbine in the habitat, depending on the type of the wind turbine and the behaviour of the considered bat species. This gives us the extra mortality caused by the wind turbines for the local population. This value is used for a population model and finally we can calculate whether the population still grows or if there already is a decline in population size which leads to the extinction of the population.rnUsing the combination of all these models, we are able to evaluate the conflict of wind turbines and bats and to predict the result of this conflict. Furthermore, it is possible to find better positions for wind turbines such that the local bat population has a better chance to survive.rnSince bats tend to move in swarm formations under certain circumstances, we introduce swarm simulation using partial integro-differential equations. Thereby, we have a closer look at existence and uniqueness properties of solutions.