90C22 Semidefinite programming
Refine
Keywords
- Kegel (1)
- Optimierung (1)
- Quadratische Optimierung (1)
- Schnittebenen (1)
- completely positive cone (1)
- copositive cone (1)
- cutting planes (1)
- kopositiver Kegel (1)
- vollständig positiver Kegel (1)
Copositive programming is concerned with the problem of optimizing a linear function over the copositive cone, or its dual, the completely positive cone. It is an active field of research and has received a growing amount of attention in recent years. This is because many combinatorial as well as quadratic problems can be formulated as copositive optimization problems. The complexity of these problems is then moved entirely to the cone constraint, showing that general copositive programs are hard to solve. A better understanding of the copositive and the completely positive cone can therefore help in solving (certain classes of) quadratic problems. In this thesis, several aspects of copositive programming are considered. We start by studying the problem of computing the projection of a given matrix onto the copositive and the completely positive cone. These projections can be used to compute factorizations of completely positive matrices. As a second application, we use them to construct cutting planes to separate a matrix from the completely positive cone. Besides the cuts based on copositive projections, we will study another approach to separate a triangle-free doubly nonnegative matrix from the completely positive cone. A special focus is on copositive and completely positive programs that arise as reformulations of quadratic optimization problems. Among those we start by studying the standard quadratic optimization problem. We will show that for several classes of objective functions, the relaxation resulting from replacing the copositive or the completely positive cone in the conic reformulation by a tractable cone is exact. Based on these results, we develop two algorithms for solving standard quadratic optimization problems and discuss numerical results. The methods presented cannot immediately be adapted to general quadratic optimization problems. This is illustrated with examples.