Fachbereich 6
Refine
Document Type
- Article (1)
- Contribution to a Periodical (1)
Keywords
- Ausdauernde Pflanzen (1)
- Bodenmikrobiologie (1)
- Energiepflanzen (1)
- Enzymes (1)
- Ernte (1)
- Exposure time (1)
- LAP (1)
- Nanopartikel (1)
- Nährstoffverlust (1)
- Silber (1)
Perennial energy crops (PECs) are increasingly used as feedstock to produce energy in an environmental friendly way. Compared to traditional conversion strategies like thermal use, sophisticated technologies such as biomethanation defined different re-quirements of the feedstock. Whereas the first concept relies on dry, woody mate-rial, biomethanation requires a moist feedstock. Thus, over time, the spectrum of species used as PECs has widened. Moreover, harvest dates were adjusted to pro-vide the feedstock at suitable moisture contents. It is well known that perennial, lignocellulose- based energy crops, compared to annual, sugar- and starch- based ones, offer ecological advantages such as, inter alia, improving biodiversity in landscape, protecting soil against erosion, and protecting groundwater from nutrient inputs. However, one of the main arguments for PEC cultivation was their undemanding nature concerning external inputs. With respect to the broader spectrum of PEC spe-cies and changed harvest dates, the question arises whether the concept of PECs being low- input energy crops is still valid. This also implies the question of suitable grow-ing conditions and sustainable management. The aims of this opinion paper were to classify different PECs according to their life- form strategy, compare nutrient exports when harvested in different maturation stages, and to discuss the results in the context of sustainable PEC cultivation on marginal land. This study revealed that nutrient exports with yield biomass of PECs harvested in green state are in the same range than those of annual energy crops and therewith several times higher than those of PECs harvested in brown state or of woody short rotation coppices. Thus, PECs can-not universally be claimed as low- input energy crops. These results also imply the consequences of cultivation of PECs on marginal land. Finally, the question has to be raised whether the term PECs should prospectively be better specified in written and spoken words.
Background: Increasing exposure to engineered inorganic nanoparticles takes actually place in both terrestric and aquatic ecosystems worldwide. Although we already know harmful effects of AgNP on the soil bacterial community, information about the impact of the factors functionalization, concentration, exposure time, and soil texture on the AgNP effect expression are still rare. Hence, in this study, three soils of different grain size were exposed for up to 90 days to bare and functionalized AgNP in concentrations ranging from 0.01 to 1.00 mg/kg soil dry weight. Effects on soil microbial community were quantified by various biological parameters, including 16S rRNA gene, photometric, and fluorescence analyses.
Results: Multivariate data analysis revealed significant effects of AgNP exposure for all factors and factor combinations investigated. Analysis of individual factors (silver species, concentration, exposure time, soil texture) in the unifactorial ANOVA explained the largest part of the variance compared to the error variance. In depth analysis of factor combinations revealed even better explanation of variance. For the biological parameters assessed in this study, the matching of soil texture and silver species, and the matching of soil texture and exposure time were the two most relevant factor combinations. The factor AgNP concentration contributed to a lower extent to the effect expression compared to silver species, exposure time and physico–chemical composition of soil.
Conclusions: The factors functionalization, concentration, exposure time, and soil texture significantly impacted the effect expression of AgNP on the soil microbial community. Especially long-term exposure scenarios are strongly needed for the reliable environmental impact assessment of AgNP exposure in various soil types.