Bodenkunde
Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
- Baumbestand (1)
- Bioenergetics (1)
- Bioindikator (1)
- Boden (1)
- Bomb calorimetry (1)
- Combustion enthalpy (1)
- Energy content (1)
- Fadenwürmer (1)
- Landwirtschaft (1)
- Nachhaltigkeit (1)
Institute
- Bodenkunde (2)
The turnover and stabilization of organic matter (OM) in soils depend on mass and energy fluxes. Understanding the energy content of soil organic matter (SOM) is therefore of crucial importance, but this has hardly been studied so far, especially in mineral soils. In this study, combustion calorimetry (bomb calorimetry) was applied to determine the energy content (combustion enthalpy, ΔCH) of various materials: litter inputs, forest floor layers (OL, OF, OH), and bulk soil and particulate organic matter (POM) from topsoils (0–5 cm). Samples were taken from 35-year-old monocultural stands of Douglas fir (Pseudotsuga menziesii), black pine (Pinus nigra), European beech (Fagus sylvatica), and red oak (Quercus rubra) grown under highly similar soil, landscape and boundary conditions. This allowed to investigate the influence of the degree of transformation and litter quality on the ΔCH of SOM. Tree species fuel the soil C cycle with high-energy litter (38.9 ± 1.1 kJ g−1C) and fine root biomass (35.9 ± 1.1 kJ g−1C). As plant material is transformed to SOM, ΔCH decreases in the order: OL (36.8 ± 1.6 kJ g−1C) ≥ OF (35.9 ± 3.7 kJ g−1C) > OH (30.6 ± 7.0 kJ g−1C) > 0–5 cm bulk soil (22.9 ± 8.2 kJ g−1C). It indicates that the energy content of OM decreases with transformation and stabilization, as microorganisms extract energy from organic compounds for growth and maintenance, resulting in lower-energy bulk SOM. The POM fraction has 1.6-fold higher ΔCH compared to the bulk SOM. Tree species significantly affect ΔCH of SOM in the mineral soil with the lowest values under beech (12.7 ± 3.4 kJ g−1C). The energy contents corresponded to stoichiometric and isotopic parameters as proxies for the degree of transformation. In conclusion, litter quality, in terms of elemental composition and energy content, defines the pathway and degree of the energy-driven microbially mediated transformation and stabilization of SOM.
Introduction: Conventional agricultural land-use may negatively impact biodiversity and the environment due to the increased disturbances to the soil ecosystem by tillage, for example. Cultivation of the perennial grain intermediate wheatgrass (Thinopyrum intermedium, IWG, Kernza®) is a nature-based solution for sustainable agriculture, improving nutrient retention mainly through its extensive root system. Nematodes serve as sensitive bioindicators, detecting early changes in the soil food web, reflecting in changes in their community structure.
Materials and Methods:IWG and annual wheat sites in South France, Belgium and South Sweden were investigated in April 2022 for two depths (5–15 cm; 25–35 cm) to evaluate the difference in nematode community structure among the cropping systems.
Results: Sites with IWG cultivation held an accumulation of structure indicators (c-p 3–5 nematodes) compared to sites with annual wheat cultivation. A generalised linear mixed model revealed significantly more root feeders, especially for the subsoil, under IWG as a result of the perennial cultivation. The maturity index, plant-parasitic index, channel index and structure index were greater for IWG sites. The enrichment index was greater for annual wheat sites due to the dominance of bacterivores and enrichment indicators (c-p 1 nematodes). The nematode community structure (weighted faunal profile analysis) indicates IWG sites as being a generally undisturbed system with efficient nutrient cycling and balanced distribution of feeding types, as well as higher metabolic footprint values for root feeders (including plant-parasitic nematodes) and fungivores. Annual wheat sites, on the other hand, held indicators of a disturbed system with increased occurrence of opportunistic species and a more bacterial driven pathway. The topsoil had an increased occurrence of structure indicators in both cropping systems.
Conclusion: IWG creates favourable conditions for a diverse food web, including improved nutrient cycling and a heterogeneous resource environment, regardless of climatic conditions, establishing it as a stable and resilient agricultural management system.