C16 Specific Distributions
Refine
Keywords
- Cluster-Analyse (1)
- Einzelinvestor (1)
- Kurtosis (1)
- Mixture-Model (1)
- Portfoliomanagement (1)
- Private Banking (1)
- Risikomaß (1)
- Schiefe (1)
- Strukturierte Produkt (1)
- Value at Risk (1)
This dissertation includes three research articles on the portfolio risks of private investors. In the first article, we analyze a large data set of private banking portfolios in Switzerland of a major bank with the unique feature that parts of the portfolios were managed by the bank, and parts were advisory portfolios. To correct the heterogeneity of individual investors, we apply a mixture model and a cluster analysis. Our results suggest that there is indeed a substantial group of advised individual investors that outperform the bank managed portfolios, at least after fees. However, a simple passive strategy that invests in the MSCI World and a risk-free asset significantly outperforms both the better advisory and the bank managed portfolios. The new regulation of the EU for financial products (UCITS IV) prescribes Value at Risk (VaR) as the benchmark for assessing the risk of structured products. The second article discusses the limitations of this approach and shows that, in theory, the expected return of structured products can be unbounded while the VaR requirement for the lowest risk class can still be satisfied. Real-life examples of large returns within the lowest risk class are then provided. The results demonstrate that the new regulation could lead to new seemingly safe products that hide large risks. Behavioral investors who choose products based only on their official risk classes and their expected returns will, therefore, invest into suboptimal products. To overcome these limitations, we suggest a new risk-return measure for financial products based on the martingale measure that could erase such loopholes. Under the mean-VaR framework, the third article discusses the impacts of the underlying's first four moments on the structured product. By expanding the expected return and the VaR of a structured product with its underlying moments, it is possible to investigate each moment's impact on them, simultaneously. Results are tested by Monte Carlo simulation and historical simulation. The findings show that for the majority of structured products, underlyings with large positive skewness are preferred. The preferences for variance and for kurtosis are ambiguous.