The 10 most recently published documents
In den letzten Jahren hat die Alternative für Deutschland (AfD) das Thema Wohnen zunehmend in ihren Wahlprogrammen aufgegriffen und für die eigene politische Profilierung genutzt. Der Beitrag zeigt, inwiefern die Thematisierung des Wohnens bei der AfD so formuliert ist, dass es erhebliche Anknüpfungspunkte an rechtes Gedankengut herstellt. Der Beitrag thematisiert die damit verbundenen Herausforderungen für eine kritische Stadtforschung sowie für progressive soziale Bewegungen. Er plädiert dafür, sich der Gefahr der rechten Vereinnahmung des Themas Wohnen bewusst zu sein und sich deutlich von den rechten Übernahmeversuchen abzugrenzen sowie Gegenstrategien zu entwickeln.
Background: Hyperhidrosis (excessive sweating, OMIM %114110) is a complex disorder with multifactorial causes. Emotional strains and social stress increase symptoms and lead to a vicious circle. Previously, we showed significantly higher depression scores, and normal cortisol awakening responses in patients with primary focal hyperhidrosis (PFH). Stress reactivity in response to a (virtual) Trier Social Stress Test (TSST-VR) has not been studied so far. Therefore, we measured sweat secretion, salivary cortisol and alpha amylase (sAA) concentrations, and subjective stress ratings in affected and non-affected subjects in response to a TSST-VR.
Method: In this pilot study, we conducted TSST-VRs and performed general linear models with repeated measurements for salivary cortisol and sAA levels, heart rate, axillary sweat and subjective stress ratings for two groups (diagnosed PFH (n = 11), healthy controls (n = 16)).
Results: PFH patients showed significantly heightened sweat secretion over time compared to controls (p = 0.006), with highest quantities during the TSST-VR. In both groups, sweating (p < 0.001), maximum cortisol levels (p = 0.002), feelings of stress (p < 0.001), and heart rate (p < 0.001) but not sAA (p = 0.068) increased significantly in response to the TSST-VR. However, no differences were detected in subjective ratings, cortisol concentrations and heart rate between PFH patients and controls (pall > 0.131).
Conclusion: Patients with diagnosed PFH showed stress-induced higher sweat secretion compared to healthy controls but did not differ in the stress reactivity with regard to endocrine or subjective markers. This pilot study is in need of replication to elucidate the role of the sympathetic nervous system as a potential pathway involved in the stress-induced emotional sweating of PFH patients.
Influence of Ozone and Drought on Tree Growth under Field Conditions in a 22 Year Time Series
(2022)
Studying the effect of surface ozone (O3) and water stress on tree growth is important for planning sustainable forest management and forest ecology. In the present study, a 22-year long time series (1998–2019) on basal area increment (BAI) and fructification severity of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H.Karst.) at five forest sites in Western Germany (Rhineland Palatinate) was investigated to evaluate how it correlates with drought and stomatal O3 fluxes (PODY) with an hourly threshold of uptake (Y) to represent the detoxification capacity of trees (POD1, with Y = 1 nmol O3 m−2 s−1). Between 1998 and 2019, POD1 declined over time by on average 0.31 mmol m−2 year−1. The BAI showed no significant trend at all sites, except in Leisel where a slight decline was observed over time (−0.37 cm2 per year, p < 0.05). A random forest analysis showed that the soil water content and daytime O3 mean concentration were the best predictors of BAI at all sites. The highest mean score of fructification was observed during the dry years, while low level or no fructification was observed in most humid years. Combined effects of drought and O3 pollution mostly influence tree growth decline for European beech and Norway spruce.
Reconstructing invisible deviating events: A conformance checking approach for recurring events
(2022)
Conformance checking enables organizations to determine whether their executed processes are compliant with the intended process. However, if the processes contain recurring activities, state-of-the-art approaches unfortunately have difficulties calculating the conformance. The occurrence of complex temporal rules can further increase the complexity of the problem. Identifying this limitation, this paper presents a novel approach towards dealing with recurring activities in conformance checking. The core idea of the approach is to reconstruct the missing events in the event log using defined rules while incorporating specified temporal event characteristics. This approach then enables the use of native conformance checking algorithms. The paper illustrates the algorithmic approach and defines the required temporal event characteristics. Furthermore, the approach is applied and evaluated in a case study on an event log for melanoma surveillance.
List-method directed forgetting (LMDF) is the demonstration that people can intentionally forget previously studied information when they are asked to forget what they have previously learned and remember new information instead. In addition, recent research demonstrated that people can selectively forget when cued to forget only a subset of the previously studied information. Both forms of forgetting are typically observed in recall tests, in which the to-be-forgotten and to-be-remembered information is tested independent of original cuing. Thereby, both LMDF and selective directed forgetting (SDF) have been studied mostly with unrelated item materials (e.g., word lists). The present study examined whether LMDF and SDF generalize to prose material. Participants learned three prose passages, which they were cued to remember or forget after the study of each passage. At the time of testing, participants were asked to recall the three prose passages regardless of original cuing. The results showed no significant differences in recall of the three lists as a function of cuing condition. The findings suggest that LMDF and SDF do not occur with prose material. Future research is needed to replicate and extend these findings with (other) complex and meaningful materials before drawing firm conclusions. If the null effect proves to be robust, this would have implications regarding the ecological validity and generalizability of current LMDF and SDF findings.
The global spread of the coronavirus pandemic has particularly dramatic consequences for the lives of migrants and refugees living in already marginalised and restricted conditions, whose ongoing crisis is at risk of being overlooked. But refugees are not only extremely vulnerable and at risk of infection, as several reports show, quickly develop their own protection measures like the production of hygienic products, the publication of their situation and calls for action and help. Therefore, this paper aims to research the effects of the coronavirus crisis on refugees in camp settings with a special ethnographic focus on how refugees actively deal with this crisis and if they, through already developed resilience, are capable of adapting to the restrictions as well as inventing strategies to cope with the difficult situation. To account for the variety of refugee camps as well as the different living conditions due to their locality, history and national asylum politics, we will look at three different locations, namely refugee asylum homes in Germany, hotspots on the Greek islands as well as one refugee camp in Kenya. The main questions will be how, under structurally and institutionally framed conditions of power and victimisation in refugee camps, forms of agency are established, made possible or limited. The goal is to show which strategies refugees apply to cope with the enhanced restrictions and exclusion, how they act to protect themselves and others from the virus and how they present and reflect their situation during the coronavirus pandemic. Finally, this discussion offers a new perspective to consider refugees not only as vulnerable victims, but also as actively engaged individuals.
Measurements of the atmospheric boundary layer (ABL) structure were performed for three years (October 2017–August 2020) at the Russian observatory “Ice Base Cape Baranova” (79.280° N, 101.620° E) using SODAR (Sound Detection And Ranging). These measurements were part of the YOPP (Year of Polar Prediction) project “Boundary layer measurements in the high Arctic” (CATS_BL) within the scope of a joint German–Russian project. In addition to SODAR-derived vertical profiles of wind speed and direction, a suite of complementary measurements at the observatory was available. ABL measurements were used for verification of the regional climate model COSMO-CLM (CCLM) with a 5 km resolution for 2017–2020. The CCLM was run with nesting in ERA5 data in a forecast mode for the measurement period. SODAR measurements were mostly limited to wind speeds <12 m/s since the signal was often lost for higher winds. The SODAR data showed a topographical channeling effect for the wind field in the lowest 100 m and some low-level jets (LLJs). The verification of the CCLM with near-surface data of the observatory showed good agreement for the wind and a negative bias for the 2 m temperature. The comparison with SODAR data showed a positive bias for the wind speed of about 1 m/s below 100 m, which increased to 1.5 m/s for higher levels. In contrast to the SODAR data, the CCLM data showed the frequent presence of LLJs associated with the topographic channeling in Shokalsky Strait. Although SODAR wind profiles are limited in range and have a lot of gaps, they represent a valuable data set for model verification. However, a full picture of the ABL structure and the climatology of channeling events could be obtained only with the model data. The climatological evaluation showed that the wind field at Cape Baranova was not only influenced by direct topographic channeling under conditions of southerly winds through the Shokalsky Strait but also by channeling through a mountain gap for westerly winds. LLJs were detected in 37% of all profiles and most LLJs were associated with channeling, particularly LLJs with a jet speed ≥ 15 m/s (which were 29% of all LLJs). The analysis of the simulated 10 m wind field showed that the 99%-tile of the wind speed reached 18 m/s and clearly showed a dipole structure of channeled wind at both exits of Shokalsky Strait. The climatology of channeling events showed that this dipole structure was caused by the frequent occurrence of channeling at both exits. Channeling events lasting at least 12 h occurred on about 62 days per year at both exits of Shokalsky Strait.
The unrestrainable evolution of medical science and technology is drastically changing health-care, enabling new medical procedures and remedies, which are increasingly intertwined with moral principles. Although a uniform European approach on assisted suicide is lacking, a common trend is developing: the boundary between euthanasia, assisted suicide and end-of-life care and the frontiers of legitimate medicine are becoming increasingly blurred. In Italy, a ruling of the Constitutional Court, no. 242/2019, declared the partial unconstitutionality of article 580 of the Italian Criminal Code, which prohibited assistance in suicide.
Specifically, article 580 excluded the criminal liability for the person who, in the manner provided for in Articles 1 and 2 of the law 22 December 2017, no. 219, “facilitates the execution of intention of suicide, autonomously and freely formed, of one person kept alive by life-sustaining treatments and suffering from an irreversible pathology, source of physical or psychological suffering that he/she deems intolerable, but fully capable of making free aware decisions, provided that such conditions and methods of execution have been verified by a public structure of the national health service, following the opinion of the territorially competent ethics committee.” The present paper analyzes the legal regime of assisted suicide in Italy, the role of the rule of law, and the crucial boundary between the branches of government with regard to this delicate issue, and investigates current legal challenges and potential future legal tracks.
Energy transport networks are one of the most important infrastructures for the planned energy transition. They form the interface between energy producers and consumers and their features make them good candidates for the tools that mathematical optimization can offer. Nevertheless, the operation of energy networks comes with two major challenges. First, the nonconvexity of the equations that model the physics in the network render the resulting problems extremely hard to solve for large-scale networks. Second, the uncertainty associated to the behavior of the different agents involved, the production of energy, and the consumption of energy make the resulting problems hard to solve if a representative description of uncertainty is to be considered.
In this cumulative dissertation we study adaptive refinement algorithms designed to cope with the nonconvexity and stochasticity of equations arising in energy networks. Adaptive refinement algorithms approximate the original problem by sequentially refining the model of a simpler optimization problem. More specifically, in this thesis, the focus of the adaptive algorithm is on adapting the discretization and description of a set of constraints.
In the first part of this thesis, we propose a generalization of the different adaptive refinement ideas that we study. We sequentially describe model catalogs, error measures, marking strategies, and switching strategies that are used to set up the adaptive refinement algorithm. Afterward, the effect of the adaptive refinement algorithm on two energy network applications is studied. The first application treats the stationary operation of district heating networks. Here, the strength of adaptive refinement algorithms for approximating the ordinary differential equation that describes the transport of energy is highlighted. We introduce the resulting nonlinear problem, consider network expansion, and obtain realistic controls by applying the adaptive refinement algorithm. The second application concerns quantile-constrained optimization problems and highlights the ability of the adaptive refinement algorithm to cope with large scenario sets via clustering. We introduce the resulting mixed-integer linear problem, discuss generic solution techniques, make the link with the generalized framework, and measure the impact of the proposed solution techniques.
The second part of this thesis assembles the papers that inspired the contents of the first part of this thesis. Hence, they describe in detail the topics that are covered and will be referenced throughout the first part.
THE NONLOCAL NEUMANN PROBLEM
(2023)
Instead of presuming only local interaction, we assume nonlocal interactions. By doing so, mass
at a point in space does not only interact with an arbitrarily small neighborhood surrounding it,
but it can also interact with mass somewhere far, far away. Thus, mass jumping from one point to
another is also a possibility we can consider in our models. So, if we consider a region in space, this
region interacts in a local model at most with its closure. While in a nonlocal model this region may
interact with the whole space. Therefore, in the formulation of nonlocal boundary value problems
the enforcement of boundary conditions on the topological boundary may not suffice. Furthermore,
choosing the complement as nonlocal boundary may work for Dirichlet boundary conditions, but
in the case of Neumann boundary conditions this may lead to an overfitted model.
In this thesis, we introduce a nonlocal boundary and study the well-posedness of a nonlocal Neu-
mann problem. We present sufficient assumptions which guarantee the existence of a weak solution.
As in a local model our weak formulation is derived from an integration by parts formula. However,
we also study a different weak formulation where the nonlocal boundary conditions are incorporated
into the nonlocal diffusion-convection operator.
After studying the well-posedness of our nonlocal Neumann problem, we consider some applications
of this problem. For example, we take a look at a system of coupled Neumann problems and analyze
the difference between a local coupled Neumann problems and a nonlocal one. Furthermore, we let
our Neumann problem be the state equation of an optimal control problem which we then study. We
also add a time component to our Neumann problem and analyze this nonlocal parabolic evolution
equation.
As mentioned before, in a local model mass at a point in space only interacts with an arbitrarily
small neighborhood surrounding it. We analyze what happens if we consider a family of nonlocal
models where the interaction shrinks so that, in limit, mass at a point in space only interacts with
an arbitrarily small neighborhood surrounding it.