### Refine

#### Language

- English (5) (remove)

#### Has Fulltext

- yes (5) (remove)

#### Keywords

- Partielle Differentialgleichung (5) (remove)

Large scale non-parametric applied shape optimization for computational fluid dynamics is considered. Treating a shape optimization problem as a standard optimal control problem by means of a parameterization, the Lagrangian usually requires knowledge of the partial derivative of the shape parameterization and deformation chain with respect to input parameters. For a variety of reasons,rnthis mesh sensitivity Jacobian is usually quite problematic. For a sufficiently smooth boundary, the Hadamard theorem provides a gradient expression that exists on the surface alone, completely bypassing the mesh sensitivity Jacobian. Building upon this, the gradient computation becomes independent of the number of design parameters and all surface mesh nodes are used as designrnunknowns in this work, effectively allowing a free morphing of shapes during optimization. Contrary to a parameterized shape optimization problem, where a smooth surface is usually created independently of the input parameters by construction, regularity is not preserved automatically in the non-parametric case. As part of this work, the shape Hessian is used in an approximative Newton method, also known as Sobolev method or gradient smoothing, to ensure a certain regularity of the updates, and thus a smooth shape is preserved while at the same time the one-shot optimization method is also accelerated considerably. For PDE constrained shape optimization, the Hessian usually is a pseudo-differential operator. Fourier analysis is used to identify the operatorrnsymbol both analytically and discretely. Preconditioning the one-shot optimization by an appropriate Hessian symbol is shown to greatly accelerate the optimization. As the correct discretization of the Hadamard form usually requires evaluating certain surface quantities such as tangential divergence and curvature, special attention is also given to discrete differential geometry on triangulated surfaces for evaluating shape gradients and Hessians.rnThe Hadamard formula and Hessian approximations are applied to a variety of flow situations. In addition to shape optimization of internal and external flows, major focus lies on aerodynamic design such as optimizing two dimensional airfoils and three dimensional wings. Shock waves form whenrnthe local speed of sound is reached, and the gradient must be evaluated correctly at discontinuous states. To ensure proper shock resolution, an adaptive multi-level optimization of the Onera M6 wing is conducted using more than 36, 000 shape unknowns on a standard office workstation, demonstrating the applicability of the shape-one-shot method to industry size problems.

Shape optimization is of interest in many fields of application. In particular, shape optimization problems arise frequently in technological processes which are modelled by partial differential equations (PDEs). In a lot of practical circumstances, the shape under investigation is parametrized by a finite number of parameters, which, on the one hand, allows the application of standard optimization approaches, but, on the other hand, unnecessarily limits the space of reachable shapes. Shape calculus presents a way to circumvent this dilemma. However, so far shape optimization based on shape calculus is mainly performed using gradient descent methods. One reason for this is the lack of symmetry of second order shape derivatives or shape Hessians. A major difference between shape optimization and the standard PDE constrained optimization framework is the lack of a linear space structure on shape spaces. If one cannot use a linear space structure, then the next best structure is a Riemannian manifold structure, in which one works with Riemannian shape Hessians. They possess the often sought property of symmetry, characterize well-posedness of optimization problems and define sufficient optimality conditions. In general, shape Hessians are used to accelerate gradient-based shape optimization methods. This thesis deals with shape optimization problems constrained by PDEs and embeds these problems in the framework of optimization on Riemannian manifolds to provide efficient techniques for PDE constrained shape optimization problems on shape spaces. A Lagrange-Newton and a quasi-Newton technique in shape spaces for PDE constrained shape optimization problems are formulated. These techniques are based on the Hadamard-form of shape derivatives, i.e., on the form of integrals over the surface of the shape under investigation. It is often a very tedious, not to say painful, process to derive such surface expressions. Along the way, volume formulations in the form of integrals over the entire domain appear as an intermediate step. This thesis couples volume integral formulations of shape derivatives with optimization strategies on shape spaces in order to establish efficient shape algorithms reducing analytical effort and programming work. In this context, a novel shape space is proposed.

This work is concerned with the numerical solution of optimization problems that arise in the context of ground water modeling. Both ground water hydraulic and quality management problems are considered. The considered problems are discretized problems of optimal control that are governed by discretized partial differential equations. Aspects of special interest in this work are inaccurate function evaluations and the ensuing numerical treatment within an optimization algorithm. Methods for noisy functions are appropriate for the considered practical application. Also, block preconditioners are constructed and analyzed that exploit the structure of the underlying linear system. Specifically, KKT systems are considered, and the preconditioners are tested for use within Krylov subspace methods. The project was financed by the foundation Stiftung Rheinland-Pfalz für Innovation and carried out in joint work with TGU GmbH, a company of consulting engineers for ground water and water resources.

Recently, optimization has become an integral part of the aerodynamic design process chain. However, because of uncertainties with respect to the flight conditions and geometrical uncertainties, a design optimized by a traditional design optimization method seeking only optimality may not achieve its expected performance. Robust optimization deals with optimal designs, which are robust with respect to small (or even large) perturbations of the optimization setpoint conditions. The resulting optimization tasks become much more complex than the usual single setpoint case, so that efficient and fast algorithms need to be developed in order to identify, quantize and include the uncertainties in the overall optimization procedure. In this thesis, a novel approach towards stochastic distributed aleatory uncertainties for the specific application of optimal aerodynamic design under uncertainties is presented. In order to include the uncertainties in the optimization, robust formulations of the general aerodynamic design optimization problem based on probabilistic models of the uncertainties are discussed. Three classes of formulations, the worst-case, the chance-constrained and the semi-infinite formulation, of the aerodynamic shape optimization problem are identified. Since the worst-case formulation may lead to overly conservative designs, the focus of this thesis is on the chance-constrained and semi-infinite formulation. A key issue is then to propagate the input uncertainties through the systems to obtain statistics of quantities of interest, which are used as a measure of robustness in both robust counterparts of the deterministic optimization problem. Due to the highly nonlinear underlying design problem, uncertainty quantification methods are used in order to approximate and consequently simplify the problem to a solvable optimization task. Computationally demanding evaluations of high dimensional integrals resulting from the direct approximation of statistics as well as from uncertainty quantification approximations arise. To overcome the curse of dimensionality, sparse grid methods in combination with adaptive refinement strategies are applied. The reduction of the number of discretization points is an important issue in the context of robust design, since the computational effort of the numerical quadrature comes up in every iteration of the optimization algorithm. In order to efficiently solve the resulting optimization problems, algorithmic approaches based on multiple-setpoint ideas in combination with one-shot methods are presented. A parallelization approach is provided to overcome the amount of additional computational effort involved by multiple-setpoint optimization problems. Finally, the developed methods are applied to 2D and 3D Euler and Navier-Stokes test cases verifying their industrial usability and reliability. Numerical results of robust aerodynamic shape optimization under uncertain flight conditions as well as geometrical uncertainties are presented. Further, uncertainty quantification methods are used to investigate the influence of geometrical uncertainties on quantities of interest in a 3D test case. The results demonstrate the significant effect of uncertainties in the context of aerodynamic design and thus the need for robust design to ensure a good performance in real life conditions. The thesis proposes a general framework for robust aerodynamic design attacking the additional computational complexity of the treatment of uncertainties, thus making robust design in this sense possible.

Krylov subspace methods are often used to solve large-scale linear equations arising from optimization problems involving partial differential equations (PDEs). Appropriate preconditioning is vital for designing efficient iterative solvers of this type. This research consists of two parts. In the first part, we compare two different kinds of preconditioners for a conjugate gradient (CG) solver attacking one partial integro-differential equation (PIDE) in finance, both theoretically and numerically. An analysis on mesh independence and rate of convergence of the CG solver is included. The knowledge of preconditioning the PIDE is applied to a relevant optimization problem. The second part aims at developing a new preconditioning technique by embedding reduced order models of nonlinear PDEs, which are generated by proper orthogonal decomposition (POD), into deflated Krylov subspace algorithms in solving corresponding optimization problems. Numerical results are reported for a series of test problems.