### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (229)
- Article (33)
- Book (11)
- Conference Proceedings (9)
- Part of Periodical (5)
- Other (3)
- Habilitation (2)
- Master's Thesis (1)
- Retro digitized Object (1)
- Working Paper (1)

#### Language

- English (295) (remove)

#### Keywords

- Stress (22)
- Fernerkundung (12)
- Cortisol (11)
- Hydrocortison (11)
- Modellierung (9)
- cortisol (9)
- n.a. (9)
- Optimierung (8)
- stress (8)
- Physiologische Psychologie (6)

#### Institute

- Psychologie (73)
- Geographie und Geowissenschaften (64)
- Mathematik (45)
- Wirtschaftswissenschaften (23)
- Anglistik (15)
- Informatik (15)
- Rechtswissenschaft (14)
- Fachbereich 4 (12)
- Fachbereich 6 (7)
- Fachbereich 1 (5)

Because EU water quality policy can result in infrastructure creation or adaptation at the local level across member states, compliance cases are worth examining critically from a sustainable spatial planning perspective. In this study, the 2000 EU Water Framework Directive’s (WFD) reach to local implementation efforts in average towns and cities is shown through the case study of nonconforming household wastewater infrastructure in the German state of Rhineland Palatinate. Seeing wastewater as a socio-technical infrastructure, we ask how the WFD implementation can be understood in the context of local infrastructure development, sustainability, and spatial planning concepts. In particular, this study examines what compliance meant for the centralization or decentralization of local wastewater infrastructure systems—and the sustainability implications for cities
from those choices.

In recent years, the study of dynamical systems has developed into a central research area in mathematics. Actually, in combination with keywords such as "chaos" or "butterfly effect", parts of this theory have been incorporated in other scientific fields, e.g. in physics, biology, meteorology and economics. In general, a discrete dynamical system is given by a set X and a self-map f of X. The set X can be interpreted as the state space of the system and the function f describes the temporal development of the system. If the system is in state x âˆˆ X at time zero, its state at time n âˆˆ N is denoted by f^n(x), where f^n stands for the n-th iterate of the map f. Typically, one is interested in the long-time behaviour of the dynamical system, i.e. in the behaviour of the sequence (f^n(x)) for an arbitrary initial state x âˆˆ X as the time n increases. On the one hand, it is possible that there exist certain states x âˆˆ X such that the system behaves stably, which means that f^n(x) approaches a state of equilibrium for nâ†’âˆž. On the other hand, it might be the case that the system runs unstably for some initial states x âˆˆ X so that the sequence (f^n(x)) somehow shows chaotic behaviour. In case of a non-linear entire function f, the complex plane always decomposes into two disjoint parts, the Fatou set F_f of f and the Julia set J_f of f. These two sets are defined in such a way that the sequence of iterates (f^n) behaves quite "wildly" or "chaotically" on J_f whereas, on the other hand, the behaviour of (f^n) on F_f is rather "nice" and well-understood. However, this nice behaviour of the iterates on the Fatou set can "change dramatically" if we compose the iterates from the left with just one other suitable holomorphic function, i.e. if we consider sequences of the form (gâˆ˜f^n) on D, where D is an open subset of F_f with f(D)âŠ‚ D and g is holomorphic on D. The general aim of this work is to study the long-time behaviour of such modified sequences. In particular, we will prove the existence of holomorphic functions g on D having the property that the behaviour of the sequence of compositions (gâˆ˜f^n) on the set D becomes quite similarly chaotic as the behaviour of the sequence (f^n) on the Julia set of f. With this approach, we immerse ourselves into the theory of universal families and hypercyclic operators, which itself has developed into an own branch of research. In general, for topological spaces X, Y and a family {T_i: i âˆˆ I} of continuous functions T_i:Xâ†’Y, an element x âˆˆ X is called universal for the family {T_i: i âˆˆ I} if the set {T_i(x): i âˆˆ I} is dense in Y. In case that X is a topological vector space and T is a continuous linear operator on X, a vector x âˆˆ X is called hypercyclic for T if it is universal for the family {T^n: n âˆˆ N}. Thus, roughly speaking, universality and hypercyclicity can be described via the following two aspects: There exists a single object which allows us, via simple analytical operations, to approximate every element of a whole class of objects. In the above situation, i.e. for a non-linear entire function f and an open subset D of F_f with f(D)âŠ‚ D, we endow the space H(D) of holomorphic functions on D with the topology of locally uniform convergence and we consider the map C_f:H(D)â†’H(D), C_f(g):=gâˆ˜f|_D, which is called the composition operator with symbol f. The transform C_f is a continuous linear operator on the Fréchet space H(D). In order to show that the above-mentioned "nice" behaviour of the sequence of iterates (f^n) on the set D âŠ‚ F_f can "change dramatically" if we compose the iterates from the left with another suitable holomorphic function, our aim consists in finding functions g âˆˆ H(D) which are hypercyclic for C_f. Indeed, for each hypercyclic function g for C_f, the set of compositions {gâˆ˜f^n|_D: n âˆˆ N} is dense in H(D) so that the sequence of compositions (gâˆ˜f^n|_D) is kind of "maximally divergent" " meaning that each function in H(D) can be approximated locally uniformly on D via subsequences of (gâˆ˜f^n|_D). This kind of behaviour stands in sharp contrast to the fact that the sequence of iterates (f^n) itself converges, behaves like a rotation or shows some "wandering behaviour" on each component of F_f. To put it in a nutshell, this work combines the theory of non-linear complex dynamics in the complex plane with the theory of dynamics of continuous linear operators on spaces of holomorphic functions. As far as the author knows, this approach has not been investigated before.

Chapter 2: Using data from the German Socio-Economic Panel, this study examines the relation-ship between immigrant residential segregation and immigrants" satisfaction with the neighbor-hood. The estimates show that immigrants living in segregated areas are less satisfied with the neighborhood. This is consistent with the hypothesis that housing discrimination rather than self-selection plays an important role in immigrant residential segregation. Our result holds true even when controlling for other influences such as household income and quality of the dwelling. It also holds true in fixed effects estimates that account for unobserved time-invariant influences. Chapter 3: Using survey data from the German Socio-Economic Panel, this study shows that immigrants living in segregated residential areas are more likely to report discrimination because of their ethnic background. This applies to both segregated areas where most neighbors are immigrants from the same country of origin as the surveyed person and segregated areas where most neighbors are immigrants from other countries of origin. The results suggest that housing discrimination rather than self-selection plays an important role in immigrant residential segregation. Chapter 4: Using data from the German Socio-Economic Panel (SOEP) and administrative data from 1996 to 2009, I investigate the question whether or not right-wing extremism of German residents is affected by the ethnic concentration of foreigners living in the same residential area. My results show a positive but insignificant relationship between ethnic concentration at the county level and the probability of extreme right-wing voting behavior for West Germany. However, due to potential endogeneity issues, I additionally instrument the share of foreigners in a county with the share of foreigners in each federal state (following an approach of Dustmann/Preston 2001). I find evidence for the interethnic contact theory, predicting a negative relationship between foreign-ers" share and right-wing voting. Moreover, I analyze the moderating role of education and the influence of cultural traits on this relationship. Chapter 5: Using data from the Socio-Economic Panel from 1998 to 2009 and administrative data on regional ethnic diversity, I show that ethnic diversity inhibits significantly people- political interest and participation in political organizations in West Germany. People seem to isolate themselves from political participation if exposed to more ethnic diversity which is particularly relevant with respect to the ongoing integration process of the European Union and the increasing transfer of legislative power from the national to European level. The results are robust if an instrumental variable strategy suggested by Dustmann and Preston (2001) is used to take into account that ethnic diversity measured on a local spatial level could be endogenous due to residential sorting. Interestingly, participation in non-political organizations is positively affected by ethnic diversity if selection bias is corrected for.

Cortisol exhibits typical ultradian and circadian rhythm and disturbances in its secretory pattern have been described in stress-related pathology. The aim of this thesis was to dissect the underlying structure of cortisol pulsatility and to develop tools to investigate the effects of this pulsatility on immune cell trafficking and the responsiveness of the neuroendocrine system and GR target genes to stress. Deconvolution modeling was set up as a tool for investigation of the pulsatile secretion underlying the ultradian cortisol rhythm. This further allowed us to investigate the role of the single cortisol pulses on the immune cell trafficking and the role of induced cortisol pulses on the kinetics of expression of GR target genes. The development of these three tools, would allow to induce and investigate in future the significance of single cortisol pulses for health and disease.

This thesis presents a study of tsunami deposits created by the 2004 Indian Ocean tsunami at the Thai Andaman coast. The outcomes of a study are the characteristics of tsunami deposit for paleo-tsunami database, the identification of major sediment layers in tsunami deposit and the reconstructing tsunami run-ups from the characteristics of tsunami deposit for a coastal development program. rnThe investigations of tsunami deposit are made almost 3 years after the event. Field investigations characterize the tsunami deposit as a distinct sediment layer variable in thickness of gray sand deposited with an erosional basis on a pre-existing soil. The best location for the observation of recent tsunami deposit is the area located about 50-200 m inland from the coastline. In most cases, the deposit layer is normally graded. In some cases, the deposit contains rip-up clasts of muddy soils and/or organic matters. The tsunami deposits are compared with three deposits from coastal sub-environments. The mean grain-size and standard deviation of deposits show that the shoreface deposits are fine to very fine sand, poorly to moderately well sorted; the swash zone deposits are coarse to fine sand, poorly to well sorted; the berm/dune deposits are medium to fine sand, poorly to well sorted; and the tsunami deposits are coarse to very fine sand, poorly to moderately well sorted. The plots of deposit mean grain-size versus sorting indicate that the tsunami deposits are composed of shoreface deposits, swash zone deposits and berm/dune deposits as well. rnThe vertical variation of the texture of tsunami deposit shows that the mean grain-size fines upward and fining landward. The analysis and interpretation of the run-up numbers from the characteristics of tsunami deposits get three run-ups for the 2004 Indian Ocean tsunami at the Thai Andaman coast. It corresponds to field observations from the eye-witness reports and local people- affirmations. The total deposition is a major transportation pattern of onshore tsunami sediments. The sediments must fine in the direction of transport. In general, the major origins of the sediment are the swash zone and berm/dune zone where coarse to medium sand is a significant material, the minor origin of tsunami sediment is a shoreface where a significant material is fine to very fine sand. Only at an area with flat slope shorface, the major origin of tsunami sediment is the shoreface.rn The thicknesses, the mean grain-sizes, and the standard deviations of tsunami deposits are used to evaluate the influences of coastal morphology on the sediment characteristics. The evaluations show that the tsunami affected areas were attacked by the variable energy waves. Wave energies at the direct tsunami wave affected areas are higher than at the indirect tsunami wave affected areas. Tsunami wave energy is highly dissipated at an area with steep slope shoreface. In the same way, tsunami run-up energy is highly dissipated at an area with steep slope onshore. A channel paralleled to the coastline decreases the run-up velocity, slightly dissipates run-up energy. The road and pond highly influence the characteristics of tsunami deposit and tsunami run-up. A road obstructs the run-up velocity, dissipates run-up energy. A pond decreases run-up velocity, dissipates run-up energy.rn The characteristics of tsunami deposit can be interpreted for reconstructing the characteristics of tsunami run-up such as a run-up height and a flow velocity. Soulsby et al.(2007)- model is applied for reconstructing tsunami run-up at the study areas. The input parameters are sediment grain-size and sediment inundation distance. Ao Kheuy beach and Khuk Khak beach, Phang Nga province, Thailand are the areas listed for reconstructing tsunami run-up. The evaluated run-up heights are 4.2-4.9 m at Ao Kheuy beach, and 5.4-9.4 m at Khuk Khak beach. The evaluated run-up velocities are 12.8-19.2 m/s (maximum) and 0.2-1.9 m/s (mean) at the coastline and onshore, respectively. Hence, a reasonably good agreement between the evaluated and observed run-up is found. Tsunami run-up height and velocity can be used for coastal development and risk management in the tsunami affected areas. The case studies from the Thai Andaman coast suggest that in the area from coastline to about 70-140 m inland was flooded by the high velocity (high energy) run-ups, and those run-up energies were dissipated there. That area ought to be a non-residential area or a physical protection construction area (flood barrier, forest planting, etc.).rn

The discretization of optimal control problems governed by partial differential equations typically leads to large-scale optimization problems. We consider flow control involving the time-dependent Navier-Stokes equations as state equation which is stamped by exactly this property. In order to avoid the difficulties of dealing with large-scale (discretized) state equations during the optimization process, a reduction of the number of state variables can be achieved by employing a reduced order modelling technique. Using the snapshot proper orthogonal decomposition method, one obtains a low-dimensional model for the computation of an approximate solution to the state equation. In fact, often a small number of POD basis functions suffices to obtain a satisfactory level of accuracy in the reduced order solution. However, the small number of degrees of freedom in a POD based reduced order model also constitutes its main weakness for optimal control purposes. Since a single reduced order model is based on the solution of the Navier-Stokes equations for a specified control, it might be an inadequate model when the control (and consequently also the actual corresponding flow behaviour) is altered, implying that the range of validity of a reduced order model, in general, is limited. Thus, it is likely to meet unreliable reduced order solutions during a control problem solution based on one single reduced order model. In order to get out of this dilemma, we propose to use a trust-region proper orthogonal decomposition (TRPOD) approach. By embedding the POD based reduced order modelling technique into a trust-region framework with general model functions, we obtain a mechanism for updating the reduced order models during the optimization process, enabling the reduced order models to represent the flow dynamics as altered by the control. In fact, a rigorous convergence theory for the TRPOD method is obtained which justifies this procedure also from a theoretical point of view. Benefiting from the trust-region philosophy, the TRPOD method guarantees to save a lot of computational work during the control problem solution, since the original state equation only has to be solved if we intend to update our model function in the trust-region framework. The optimization process itself is completely based on reduced order information only.

The complicated human alternative GR promoter region plays a pivotal role in the regulation of GR levels. In this thesis, both genomic and environmental factors linked with GR expression are covered. This research showed that GR promoters were susceptible to silencing by methylation and the activity of the individual promoters was also modulated by SNPs. E2F1 is a major element to drive the expression of GR 1F transcripts and single CpG dinucleotide methylation cannot mediate the inhibition of transcription in vitro. Also, the distribution of GR first exons and 3" splice variants (GRα and GR-P) is expressed throughout the human brain with no region-specific alternative first exon usage. These data mirrored the consistently low levels of methylation in the brain, and the observed homogeneity throughout the studied regions. Taken together, the research presented in this thesis explored several layers of complexity in GR transcriptional regulation.

Mobile computing poses different requirements on middleware than more traditional desktop systems interconnected by fixed networks. Not only the characteristics of mobile network technologies as for example lower bandwidth and unreliability demand for customized support. Moreover, the devices employed in mobile settings usually are less powerful than their desktop counterparts. Slow processors, a fairly limited amount of memory, and smaller displays are typical properties of mobile equipment, again requiring special treatment. Furthermore, user mobility results in additional requirements on appropriate middleware support. As opposed to the quite static environments dominating the world of desktop computing, dynamic aspects gain more importance. Suitable strategies and techniques for exploring the environment e.g. in order to discover services available locally are only one example. Managing resources in a fault-tolerant manner, reducing the impact ill-behaved clients have on system stability define yet another exemplary prerequisite. Most state of the art middleware has been designed for use in the realm of static, resource rich environments and hence is not immediately applicable in mobile settings as set forth above. The work described throughout this thesis aims at investigating the suitability of different middleware technologies with regard to application design, development, and deployment in the context of mobile networks. Mostly based upon prototypes, shortcomings of those technologies are identified and possible solutions are proposed and evaluated where appropriate. Besides tailoring middleware to specific communication and device characteristics, the cellular structure of current mobile networks may and shall be exploited in favor of more scalable and robust systems. Hence, an additional topic considered within this thesis is to point out and investigate suitable approaches permitting to benefit from such cellular infrastructures. In particular, a system architecture for the development of applications in the context of mobile networks will be proposed. An evaluation of this architecture employing mobile agents as flexible, network-side representatives for mobile terminals is performed, again based upon a prototype application. In summary, this thesis aims at providing several complementary approaches regarding middleware support tailored for mobile, cellular networks, a field considered to be of rising importance in a world where mobile communication and particularly data services emerge rapidly, augmenting the globally interconnecting, wired Internet.

This study aims to estimate the cotton yield at the field and regional level via the APSIM/OZCOT crop model, using an optimization-based recalibration approach based on the state variable of the cotton canopyâ€”the leaf area index (LAI), derived from atmospherically corrected Landsat-8 OLI remote sensing images in 2014. First, a local sensitivity and global analysis approach was employed to test the sensitivity of cultivar, soil and agronomic parameters to the dynamics of the LAI. After sensitivity analyses, a series of sensitive parameters were obtained. Then, the APSIM/OZCOT crop model was calibrated by observations over a two-year span (2006"2007) at the Aksu station, combined with these sensitive cultivar parameters and the current understanding of cotton cultivar parameters. Third, the relationship between the observed in-situ LAI and synchronous perpendicular vegetation indices derived from six Landsat-8 OLI images covering the entire growth stage was modelled to generate LAI maps in time and space. Finally, the Particle Swarm Optimization (PSO) and general-purpose optimization approach (based on Nelder-Mead algorithm) were used to recalibrate four sensitive agronomic parameters (row spacing, sowing density per row, irrigation amount and total fertilization) according to the minimization of the root-mean-square deviation (RMSE) between the simulated LAI from the APSIM/OZCOT model and retrieved LAI from Landsat-8 OLI remote sensing images. After the recalibration, the best simulated results compared with observed cotton yield were obtained. The results showed that: (1) FRUDD, FLAI and DDISQ were the major cultivar parameters suitable for calibrating the cotton cultivar. (2) After the calibration, the simulated LAI performed well with an RMSE and mean absolute error (MAE) of 0.45 and 0.33, respectively, in 2006 and 0.46 and 0.41, respectively, in 2007. The coefficient of determination between the observed and simulated LAI was 0.83 and 0.97, respectively, in 2006 and 2007. The Pearson- correlation coefficient was 0.913 and 0.988 in 2006 and 2007, respectively, with a significant positive correlation between the simulated and observed LAI. The difference between the observed and simulated yield was 776.72 kg/ha and 259.98 kg/ha in 2006 and 2007, respectively. (3) Cotton cultivation in 2014 was obtained using three Landsat-8 OLI imagesâ€”DOY136 (May), DOY 168 (June) and DOY 200 (July)â€”based on the phenological differences in cotton and other vegetation types. (4) The yield estimation after the assimilation closely approximated the field-observed values, and the coefficient of determination was as high as 0.82, after recalibration of the APSIM/OZCOT model for ten cotton fields. The difference between the observed and assimilated yields for the ten fields ranged from 18.2 to 939.7 kg/ha. The RMSE and MAE between the assimilated and observed yield was 417.5 and 303.1 kg/ha, respectively. These findings provide scientific evidence for the feasibility of coupled remote sensing and APSIM/OZCOT model at the field level. (5) Upscaling from field level to regional level, the assimilation algorithm and scheme are both especially important. Although the PSO method is very efficient, the computational efficiency is also the shortcoming of the assimilation strategy on a regional scale. Comparisons between the PSO and general-purpose optimization method (based on the Nelder-Mead algorithm) were implemented from the RSME, LAI curve and computational time. The general-purpose optimization method (based on the Nelder-Mead algorithm) was used for the regional assimilation between remote sensing and the APSIM/OZCOT model. Meanwhile, the basic unit for regional assimilation was also determined as cotton field rather than pixel. Moreover, the crop growth simulation was also divided into two phases (vegetative growth and reproductive growth) for regional assimilation. (6) The regional assimilation at the vegetative growth stage between the remote sensing derived and APSIM/OZCOT model-simulated LAI was implemented by adjusting two parameters: row spacing and sowing density per row. The results showed that the sowing density of cotton was higher in the southern part than in the northern part of the study area. The spatial pattern of cotton density was also consistent with the reclamation from 2001 to 2013. Cotton fields after early reclamation were mainly located in the southern part while the recent reclamation was located in the northern part. Poor soil quality, lack of irrigation facilities and woodland belts of cotton fields in the northern part caused the low density of cotton. Regarding the row spacing, the northern part was larger than the southern part due to the variation of two agronomic modes from military and private companies. (7) The irrigation and fertilization amount were both used as key parameters to be adjusted for regional assimilation during the reproductive growth period. The result showed that the irrigation per time ranged from 58.14 to 89.99 mm in the study area. The spatial distribution of the irrigation amount is higher in the northern part while lower in southern study area. The application of urea fertilization ranged from 500.35 to 1598.59 kg/ha in the study area. The spatial distribution of fertilization was lower in the northern part and higher in the southern part. More fertilization applied in the southern study area aims to increase the boll weight and number for pursuing higher yields of cotton. The frequency of the RSME during the second assimilation was mainly located in the range of 0.4"0.6 m2/m2. The estimated cotton yield ranged from 1489 to 8895 kg/ha. The spatial distribution of the estimated yield is also higher in the southern part than the northern study area.