Refine
Year of publication
Document Type
- Doctoral Thesis (62)
- Habilitation (2)
- Article (1)
Keywords
- Optimierung (7)
- Approximation (6)
- Approximationstheorie (6)
- Funktionentheorie (6)
- Partielle Differentialgleichung (6)
- Universalität (6)
- Funktionalanalysis (5)
- universal functions (5)
- Numerische Strömungssimulation (4)
- Optimale Kontrolle (4)
Institute
- Mathematik (65) (remove)
Eine ganze Funktion φ heißt T-universell bezüglich einer gegebenen Folge b:={b_{n}\}_{n \in ℕ komplexer Zahlen mit b_{n} \to \infty$, falls eine geeignete Folge φ(z+b_{n_{k}})\}$ additiver Translationen von φ lokal gleichmäßig in ℂ gegen jede vorgegebene ganze Funktion konvergiert. Ferner nennen wir eine ganze Funktion φ, für welche eine geeignete Folge φ{(n_k)}\}$ ihrer Ableitungen lokal gleichmäßig in ℂ gegen jede vorgegebene ganze Funktion konvergiert, ableitungsuniversell. Die Existenz solcher Funktionen wurde von Birkhoff (1929) und MacLane (1952) bzw. Verallgemeinerungen ihrer Ergebnisse gesichert. In dieser Arbeit wird die Konstruktion solcher Funktionen, die zusätzlich auf jeder Geraden beschränkt sind oder Nullstellen an bestimmten vorgegebenen Punkten besitzen, studiert. Im Besonderen stellte sich hierbei heraus, dass die Menge aller bezüglich einer gegebenen Folge b - welche einer gewissen Bedingung genügt - T-universellen Funktionen, die überdies auf jeder Geraden beschränkt sind, zwar dicht, aber nicht residual im Raum aller ganzen Funktionen versehen mit der lokal-gleichmäßigen Topologie ist. Ebenso überraschend ist die Konstruktion von T-universellen Funktionen, welche eine "regelmäßige Nullstellenasymptotik" besitzen.
Es wird die Existenz einer Potenzreihe vom Konvergenzradius 1 bewiesen, so dass die mit einer zweifach unendlichen Matrix A (deren komplexe Einträge drei Bedingungen erfüllen müssen) gebildeten A -Transformierten außerhalb des (einfach zusammenhängenden) Holomorphiegebietes der Potenzreihe überkonvergieren. Das Hauptergebnis der Arbeit ist ein Satz über die Existenz einer universellen Potenzreihe vom Konvergenzradius 1, so dass deren A "Transformierte stetige Funktionen auf kompakten, holomorphe Funktionen auf offenen Mengen (in beiden Fällen liegen die Mengen im Komplement des einfach zusammenhängenden Holomorphiegebietes der Potenzreihe) approximieren und sich zusätzlich zur fast-überall-Approximation messbarer Funktionen auf messbaren Mengen (im Komplement des Holomorphiegebietes der Potenzreihe gelegen) eignen. Als wichtige Konsequenz dieses Hauptergebnisses ergibt sich für den Fall, dass das Holomorphiegebietes der Potenzreihe der Einheitskreis ist, die Existenz einer universellen trigonometrischen Reihe, so dass deren A "Transformierte auf dem Rand des Einheitskreises stetige Funktionen approximieren und zusätzlich messbare Funktionen fast-überall auf [0,2π] approximieren
The optimal control of fluid flows described by the Navier-Stokes equations requires massive computational resources, which has led researchers to develop reduced-order models, such as those derived from proper orthogonal decomposition (POD), to reduce the computational complexity of the solution process. The object of the thesis is the acceleration of such reduced-order models through the combination of POD reduced-order methods with finite element methods at various discretization levels. Special stabilization methods required for high-order solution of flow problems with dominant convection on coarse meshes lead to numerical data that is incompatible with standard POD methods for reduced-order modeling. We successfully adapt the POD method for such problems by introducing the streamline diffusion POD method (SDPOD). Using the novel SDPOD method, we experiment with multilevel recursive optimization at Reynolds numbers of Re=400 and Re=10,000.
In dieser Dissertation beschäftigen wir uns mit der konstruktiven und generischen Gewinnung universeller Funktionen. Unter einer universellen Funktion verstehen wie dabei eine solche holomorphe Funktion, die in gewissem Sinne ganze Klassen von Funktionen enthält. Die konstruktive Methode beinhaltet die explizite Konstruktion einer universellen Funktion über einen Grenzprozess, etwa als Polynomreihe. Die generische Methode definiert zunächst rein abstrakt die jeweils gewünschte Klasse von universellen Funktionen. Mithilfe des Baireschen Dichtesatzes wird dann gezeigt, dass die Klasse dieser Funktionen nicht nur nichtleer, sondern sogar G_delta und dicht in dem betrachteten Funktionenraum ist. Beide Methoden bedienen sich der Approximationssätze von Runge und von Mergelyan. Die Hauptergebnisse sind die folgenden: (1) Wir haben konstruktiv die Existenz von universellen Laurentreihen auf mehrfach zusammenhängenden Gebieten bewiesen. Zusätzlich haben wir gezeigt, dass die Menge solcher universeller Laurentreihen dicht im Raum der auf dem betrachteten Gebiet holomorphen Funktionen ist. (2) Die Existenz von universellen Faberreihen auf gewissen Gebieten wurde sowohl konstruktiv als auch generisch bewiesen. (3) Zum einen haben wir konstruktiv gezeigt, dass es so genannte ganze T-universelle Funktionen mit vorgegebenen Approximationswegen gibt. Die Approximationswege sind durch eine hinreichend variable funktionale Form vorgegeben. Die Menge solcher Funktionen ist im Raum der ganzen Funktionen eine dichte G_delta-Menge. Zum anderen haben wir generisch die Existenz von auf einem beschränkten Gebiet T-universellen Funktionen bezüglich gewisser vorgegebener Approximationswege bewiesen. Die Approximationswege sind auch hier genügend allgemein.
Die Probleme bezüglich der Existenz universeller Funktionen und die universelle Approximation von Funktionen sind von klassischer Natur und spielen eine zentrale Rolle. Folgende Untersuchungen sind Gegenstand dieser Arbeit: Universelle Funktionen, die durch Lückenreihen dargestellt werden, sog. eingeschränkte Universalitäten, mehrfache Universalitäten sowie die universelle Approximation messbarer Funktionen. In einem letzten Kapitel werden abschließend ganzzahlige Cesaro-Mittel untersucht. Hier zeigt sich, dass alle bewiesenen Ergebnisse dieser Arbeit über universelle Approximation im Komplement des abgeschlossenen Einheitskreises durch Teilsummen einer Potenzreihe vom Konvergenzradius 1 auch auf die jeweiligen ganzzahligen Cesaro-Transformierten der Teilsummen übertragbar sind.
In this thesis we focus on the development and investigation of methods for the computation of confluent hypergeometric functions. We point out the relations between these functions and parabolic boundary value problems and demonstrate applications to models of heat transfer and fluid dynamics. For the computation of confluent hypergeometric functions on compact (real or complex) intervals we consider a series expansion based on the Hadamard product of power series. It turnes out that the partial sums of this expansion are easily computable and provide a better rate of convergence in comparison to the partial sums of the Taylor series. Regarding the computational accuracy the problem of cancellation errors is reduced considerably. Another important tool for the computation of confluent hypergeometric functions are recurrence formulae. Although easy to implement, such recurrence relations are numerically unstable e.g. due to rounding errors. In order to circumvent these problems a method for computing recurrence relations in backward direction is applied. Furthermore, asymptotic expansions for large arguments in modulus are considered. From the numerical point of view the determination of the number of terms used for the approximation is a crucial point. As an application we consider initial-boundary value problems with partial differential equations of parabolic type, where we use the method of eigenfunction expansion in order to determine an explicit form of the solution. In this case the arising eigenfunctions depend directly on the geometry of the considered domain. For certain domains with some special geometry the eigenfunctions are of confluent hypergeometric type. Both a conductive heat transfer model and an application in fluid dynamics is considered. Finally, the application of several heat transfer models to certain sterilization processes in food industry is discussed.
In this thesis, we study the convergence behavior of an efficient optimization method used for the identification of parameters for underdetermined systems. The research is motivated by optimization problems arising from the estimation of parameters in neural networks as well as in option pricing models. In the first application, we are concerned with neural networks used to forecasting stock market indices. Since neural networks are able to describe extremely complex nonlinear structures they are used to improve the modelling of the nonlinear dependencies occurring in the financial markets. Applying neural networks to the forecasting of economic indicators, we are confronted with a nonlinear least squares problem of large dimension. Furthermore, in this application the number of parameters of the neural network to be determined is usually much larger than the number of patterns which are available for the determination of the unknowns. Hence, the residual function of our least squares problem is underdetermined. In option pricing, an important but usually not known parameter is the volatility of the underlying asset of the option. Assuming that the underlying asset follows a one-factor continuous diffusion model with nonconstant drift and volatility term, the value of an European call option satisfies a parabolic initial value problem with the volatility function appearing in one of the coefficients of the parabolic differential equation. Using this system equation, the estimation of the volatility function is described by a nonlinear least squares problem. Since the adaption of the volatility function is based only on a small number of observed market data these problems are naturally ill-posed. For the solution of these large-scale underdetermined nonlinear least squares problems we use a fully iterative inexact Gauss-Newton algorithm. We show how the structure of a neural network as well as that of the European call price model can be exploited using iterative methods. Moreover, we present theoretical statements for the convergence of the inexact Gauss-Newton algorithm applied to the less examined case of underdetermined nonlinear least squares problems. Finally, we present numerical results for the application of neural networks to the forecasting of stock market indices as well as for the construction of the volatility function in European option pricing models. In case of the latter application, we discretize the parabolic differential equation using a finite difference scheme and we elucidate convergence problems of the discrete scheme when the initial condition is not everywhere differentiable.
This work is concerned with arbitrage bounds for prices of contingent claims under transaction costs, but regardless of other conceivable market frictions. Assumptions on the underlying market are held as weak as convenient for the deduction of meaningful results that make good economic sense. In discrete time we also allow for underlying price processes with uncountable state space. In continuous time the underlying price process is modeled by a semimartingale. For the most part we could avoid any stronger assumptions. The main problems with which we deal in this work are the modelling of (proportional) transaction costs, Fundamental Theorems of Asset Pricing under transaction costs, dual characterizations of arbitrage bounds under transaction costs, Quantile-Hedging under transaction costs, alternatives to the Black-Scholes model in continuous time (under transaction costs). The results apply to stock and currency markets.
Das Konzept der proximalen Mehrschritt-Regularisierung (MSR) auf Folgen von Gittern bei der Lösung inkorrekter Variationsungleichungen wurde von Kaplan und Tichatschke im Jahre 1997 in ihrer Arbeit "Prox-regularization and solution of illposed elliptic variational inequalities" vorgeschlagen und theoretisch motiviert. In demselben Artikel betrachtet man ein allgemeines Problem der partiellen Regularisierung auf einem abgeschlossenen Unterraum. Als Gegenstand der Anwendung solcher Regularisierung können die schlecht gestellten Optimalsteuerprobleme heraustreten, wobei der Unterraum in dem ganzen Prozessraum durch Steuervariablen gebildet wird. Im ersten Kapitel der vorliegenden Dissertation betrachten wir ein abstraktes linear-quadratisches Kontrollproblem in allgemeinen Hilberträumen. Wir diskutieren Voraussetzungen und Bedingungen, unter denen das Kontrollproblem inkorrekt wird. Danach werden zwei allgemeine numerische Verfahren der partiellen Mehrschritt-Regularisierung formuliert. Im ersten Fall untersucht man das MSR-Verfahren, in dem die Zustandsgleichung in einen quadratischen Strafterm eingebettet wird, gemäß der entsprechenden Publikationen von Kaplan und Tichatschke. Im zweiten Fall werden die Ersatzprobleme des MSR-Verfahrens mit exakt erfüllter Zustandsgleichung entwickelt. Im Mittelpunkt sämtlicher Forschungen steht die Konvergenz der approximativen Lösungen von Ersatzproblemen des MSR-Verfahrens gegen ein Element aus der Optimalmenge des Ausgangsproblems. Es stellt sich die Frage: in welchem der genannten Fälle können schwächeren Konvergenzbedingungen für die inneren Approximationen angegeben werden? Um diese Frage aufzuklären, untersuchen wir zwei inkorrekten Kontrollproblme mit elliptischen Zustandsgleichungen und verteilter Steuerung. Das erste Problem kann auf das bekannte Fuller-Problem zurückgeführt werden, für welches eine analytische Lösung mit sogenanntem "chattering regime" existiert und welches ein Basisbeispiel für unsere Aufgaben liefert. Zur Lösung des Fuller-Problems formulieren wir einen MSR-Algorithmus, in dem man mit Fehlern des Strafverfahrens und der FEM-Approximationen rechnen muß. Als Hauptergebnis erhalten wir ein Konvergenzkriterium, das das asymptotische Verhalten von Regularisierungs-, Diskretisierungs- und Strafparametern des MSR-Algorithmus bestimmt. Im letzten Kapitel formulieren wir ein anderes schlecht gestelltes Optimalsteuerproblem mit verteilter Steuerung über dem Polygongebiet. Die Zustandsgleichung wird nun durch ein Poisson-Problem mit gemischten Randbedingungen erzeugt. Solche Aufgabenstellung liefert eine natürliche Erweiterung des auf einer gewöhnlichen Differentialgeichung beruhenden Fuller-Problems auf die Kontrollprobleme mit partiellen Differentialgleichungen. Wir formulieren neuerlich das MSR-Verfahren, in dem man neben dem Diskretisierungsfehler auch einen Berechnungsfehler berücksichtigt. Diesmal verzichten wir aber auf die Straftechniken und stellen die Ersatzprobleme mit exakt erfüllter Zustandsgleichung zusammen. Mit diesem alternativen Zugang und anhand der Falkschen Beweistechniken erhalten wir ein schwächeres und somit auch besseres Konvergenzkriterium für das MSR-Verfahren. Zum Abschluß präsentieren wir Ergebnisse der numerischen Tests, durchgeführt mit dem MSR-Verfahren für ein konkretes Optimalsteuerproblem, dessen Lösung ein zweidimensionales chattering regime aufweist.