### Refine

#### Year of publication

- 2016 (3) (remove)

#### Keywords

- Binomialverteilung (2)
- binomial (2)
- Approximation (1)
- Berry-Esseen (1)
- Binomial (1)
- FormenrĂ¤ume (1)
- Formoptimierung (1)
- Intervallalgebra (1)
- Markov Inkrement (1)
- Markov-Kette (1)

#### Institute

- Mathematik (3) (remove)

The present work considers the normal approximation of the binomial distribution and yields estimations of the supremum distance of the distribution functions of the binomial- and the corresponding standardized normal distribution. The type of the estimations correspond to the classical Berry-Esseen theorem, in the special case that all random variables are identically Bernoulli distributed. In this case we state the optimal constant for the Berry-Esseen theorem. In the proof of these estimations several inequalities regarding the density as well as the distribution function of the binomial distribution are presented. Furthermore in the estimations mentioned above the distribution function is replaced by the probability of arbitrary, not only unlimited intervals and in this new situation we also present an upper bound.

The main achievement of this thesis is an analysis of the accuracy of computations with Loader's algorithm for the binomial density. This analysis in later progress of work could be used for a theorem about the numerical accuracy of algorithms that compute rectangle probabilities for scan statistics of a multinomially distributed random variable. An example that shall illustrate the practical use of probabilities for scan statistics is the following, which arises in epidemiology: Let n patients arrive at a clinic in d = 365 days, each of the patients with probability 1/d at each of these d days and all patients independently from each other. The knowledge of the probability, that there exist 3 adjacent days, in which together more than k patients arrive, helps deciding, after observing data, if there is a cluster which we would not suspect to have occurred randomly but for which we suspect there must be a reason. Formally, this epidemiological example can be described by a multinomial model. As multinomially distributed random variables are examples of Markov increments, which is a fact already used implicitly by Corrado (2011) to compute the distribution function of the multinomial maximum, we can use a generalized version of Corrado's Algorithm to compute the probability described in our example. To compute its result, the algorithm for rectangle probabilities for Markov increments always uses transition probabilities of the corresponding Markov Chain. In the multinomial case, the transition probabilities of the corresponding Markov Chain are binomial probabilities. Therefore, we start an analysis of accuracy of Loader's algorithm for the binomial density, which for example the statistical software R uses. With the help of accuracy bounds for the binomial density we would be able to derive accuracy bounds for the computation of rectangle probabilities for scan statistics of multinomially distributed random variables. To figure out how sharp derived accuracy bounds are, in examples these can be compared to rigorous upper bounds and rigorous lower bounds which we obtain by interval-arithmetical computations.

Shape optimization is of interest in many fields of application. In particular, shape optimization problems arise frequently in technological processes which are modelled by partial differential equations (PDEs). In a lot of practical circumstances, the shape under investigation is parametrized by a finite number of parameters, which, on the one hand, allows the application of standard optimization approaches, but, on the other hand, unnecessarily limits the space of reachable shapes. Shape calculus presents a way to circumvent this dilemma. However, so far shape optimization based on shape calculus is mainly performed using gradient descent methods. One reason for this is the lack of symmetry of second order shape derivatives or shape Hessians. A major difference between shape optimization and the standard PDE constrained optimization framework is the lack of a linear space structure on shape spaces. If one cannot use a linear space structure, then the next best structure is a Riemannian manifold structure, in which one works with Riemannian shape Hessians. They possess the often sought property of symmetry, characterize well-posedness of optimization problems and define sufficient optimality conditions. In general, shape Hessians are used to accelerate gradient-based shape optimization methods. This thesis deals with shape optimization problems constrained by PDEs and embeds these problems in the framework of optimization on Riemannian manifolds to provide efficient techniques for PDE constrained shape optimization problems on shape spaces. A Lagrange-Newton and a quasi-Newton technique in shape spaces for PDE constrained shape optimization problems are formulated. These techniques are based on the Hadamard-form of shape derivatives, i.e., on the form of integrals over the surface of the shape under investigation. It is often a very tedious, not to say painful, process to derive such surface expressions. Along the way, volume formulations in the form of integrals over the entire domain appear as an intermediate step. This thesis couples volume integral formulations of shape derivatives with optimization strategies on shape spaces in order to establish efficient shape algorithms reducing analytical effort and programming work. In this context, a novel shape space is proposed.