Refine
Document Type
- Doctoral Thesis (44) (remove)
Keywords
- Optimierung (5)
- Schätzung (4)
- Erhebungsverfahren (3)
- Finanzierung (3)
- Stichprobe (3)
- Amtliche Statistik (2)
- Approximation (2)
- Deutschland (2)
- Familienbetrieb (2)
- Gestaltoptimierung (2)
Institute
- Fachbereich 4 (44) (remove)
Survey data can be viewed as incomplete or partially missing from a variety of perspectives and there are different ways of dealing with this kind of data in the prediction and the estimation of economic quantities. In this thesis, we present two selected research contexts in which the prediction or estimation of economic quantities is examined under incomplete survey data.
These contexts are first the investigation of composite estimators in the German Microcensus (Chapters 3 and 4) and second extensions of multivariate Fay-Herriot (MFH) models (Chapters 5 and 6), which are applied to small area problems.
Composite estimators are estimation methods that take into account the sample overlap in rotating panel surveys such as the German Microcensus in order to stabilise the estimation of the statistics of interest (e.g. employment statistics). Due to the partial sample overlaps, information from previous samples is only available for some of the respondents, so the data are partially missing.
MFH models are model-based estimation methods that work with aggregated survey data in order to obtain more precise estimation results for small area problems compared to classical estimation methods. In these models, several variables of interest are modelled simultaneously. The survey estimates of these variables, which are used as input in the MFH models, are often partially missing. If the domains of interest are not explicitly accounted for in a sampling design, the sizes of the samples allocated to them can, by chance, be small. As a result, it can happen that either no estimates can be calculated at all or that the estimated values are not published by statistical offices because their variances are too large.
Coastal erosion describes the displacement of land caused by destructive sea waves,
currents or tides. Due to the global climate change and associated phenomena such as
melting polar ice caps and changing current patterns of the oceans, which result in rising
sea levels or increased current velocities, the need for countermeasures is continuously
increasing. Today, major efforts have been made to mitigate these effects using groins,
breakwaters and various other structures.
This thesis will find a novel approach to address this problem by applying shape optimization
on the obstacles. Due to this reason, results of this thesis always contain the
following three distinct aspects:
The selected wave propagation model, i.e. the modeling of wave propagation towards
the coastline, using various wave formulations, ranging from steady to unsteady descriptions,
described from the Lagrangian or Eulerian viewpoint with all its specialties. More
precisely, in the Eulerian setting is first a steady Helmholtz equation in the form of a
scattering problem investigated and followed subsequently by shallow water equations,
in classical form, equipped with porosity, sediment portability and further subtleties.
Secondly, in a Lagrangian framework the Lagrangian shallow water equations form the
center of interest.
The chosen discretization, i.e. dependent on the nature and peculiarity of the constraining
partial differential equation, we choose between finite elements in conjunction
with a continuous Galerkin and discontinuous Galerkin method for investigations in the
Eulerian description. In addition, the Lagrangian viewpoint offers itself for mesh-free,
particle-based discretizations, where smoothed particle hydrodynamics are used.
The method for shape optimization w.r.t. the obstacle’s shape over an appropriate
cost function, constrained by the solution of the selected wave-propagation model. In
this sense, we rely on a differentiate-then-discretize approach for free-form shape optimization
in the Eulerian set-up, and reverse the order in Lagrangian computations.
Issues in Price Measurement
(2022)
This thesis focuses on the issues in price measurement and consists of three chapters. Due to outdated weighting information, a Laspeyres-based consumer price index (CPI) is prone to accumulating upward bias. Therefore, chapter 1 introduces and examines simple and transparent revision approaches that retrospectively address the source of the bias. They provide a consistent long-run time series of the CPI and require no additional information. Furthermore, a coherent decomposition of the bias into the contributions of individual product groups is developed. In a case study, the approaches are applied to a Laspeyres-based CPI. The empirical results confirm the theoretical predictions. The proposed revision approaches are adoptable not only to most national CPIs but also to other price-level measures such as the producer price index or the import and export price indices.
Chapter 2 is dedicated to the measurement of import and export price indices. Such indices are complicated by the impact of exchange rates. These indices are usually also compiled by some Laspeyres type index. Therefore, substitution bias is an issue. The terms of trade (ratio of export and import price index) are therefore also likely to be distorted. The underlying substitution bias accumulates over time. The present article applies a simple and transparent retroactive correction approach that addresses the source of the substitution bias and produces meaningful long-run time series of import and export price levels and, therefore, of the terms of trade. Furthermore, an empirical case study is conducted that demonstrates the efficacy and versatility of the correction approach.
Chapter 3 leaves the field of index revision and studies another issue in price measurement, namely, the economic evaluation of digital products in monetary terms that have zero market prices. This chapter explores different methods of economic valuation and pricing of free digital products and proposes an alternative way to calculate the economic value and a shadow price of free digital products: the Usage Cost Model (UCM). The goal of the chapter is, first of all, to formulate a theoretical framework and incorporate an alternative measure of the value of free digital products. However, an empirical application is also made to show the work of the theoretical model. Some conclusions on applicability are drawn at the end of the chapter.
Broadcast media such as television have spread rapidly worldwide in the last century. They provide viewers with access to new information and also represent a source of entertainment that unconsciously exposes them to different social norms and moral values. Although the potential impact of exposure to television content have been studied intensively in economic research in recent years, studies examining the long-term causal effects of media exposure are still rare. Therefore, Chapters 2 to 4 of this thesis contribute to the better understanding of long-term effects of television exposure.
Chapter 2 empirically investigates whether access to reliable environmental information through television can influence individuals' environmental awareness and pro-environmental behavior. Analyzing exogenous variation in Western television reception in the German Democratic Republic shows that access to objective reporting on environmental pollution can enhance concerns regarding pollution and affect the likelihood of being active in environmental interest groups.
Chapter 3 utilizes the same natural experiment and explores the relationship between exposure to foreign mass media content and xenophobia. In contrast to the state television broadcaster in the German Democratic Republic, West German television regularly confronted its viewers with foreign (non-German) broadcasts. By applying multiple measures for xenophobic attitudes, our findings indicate a persistent mitigating impact of foreign media content on xenophobia.
Chapter 4 deals with another unique feature of West German television. In contrast to East German media, Western television programs regularly exposed their audience to unmarried and childless characters. The results suggest that exposure to different gender stereotypes contained in television programs can affect marriage, divorce, and birth rates. However, our findings indicate that mainly women were affected by the exposure to unmarried and childless characters.
Chapter 5 examines the influence of social media marketing on crowd participation in equity crowdfunding. By analyzing 26,883 investment decisions on three German equity crowdfunding platforms, our results show that startups can influence the success of their equity crowdfunding campaign through social media posts on Facebook and Twitter.
In Chapter 6, we incorporate the concept of habit formation into the theoretical literature on trade unions and contribute to a better understanding of how internal habit preferences influence trade union behavior. The results reveal that such internal reference points lead trade unions to raise wages over time, which in turn reduces employment. Conducting a numerical example illustrates that the wage effects and the decline in employment can be substantial.
Let K be a compact subset of the complex plane. Then the family of polynomials P is dense in A(K), the space of all continuous functions on K that are holomorphic on the interior of K, endowed with the uniform norm, if and only if the complement of K is connected. This is the statement of Mergelyan's celebrated theorem.
There are, however, situations where not all polynomials are required to approximate every f ϵ A(K) but where there are strict subspaces of P that are still dense in A(K). If, for example, K is a singleton, then the subspace of all constant polynomials is dense in A(K). On the other hand, if 0 is an interior point of K, then no strict subspace of P can be dense in A(K).
In between these extreme cases, the situation is much more complicated. It turns out that it is mostly determined by the geometry of K and its location in the complex plane which subspaces of P are dense in A(K). In Chapter 1, we give an overview of the known results.
Our first main theorem, which we will give in Chapter 3, deals with the case where the origin is not an interior point of K. We will show that if K is a compact set with connected complement and if 0 is not an interior point of K, then any subspace Q ⊂ P which contains the constant functions and all but finitely many monomials is dense in A(K).
There is a close connection between lacunary approximation and the theory of universality. At the end of Chapter 3, we will illustrate this connection by applying the above result to prove the existence of certain universal power series. To be specific, if K is a compact set with connected complement, if 0 is a boundary point of K and if A_0(K) denotes the subspace of A(K) of those functions that satisfy f(0) = 0, then there exists an A_0(K)-universal formal power series s, where A_0(K)-universal means that the family of partial sums of s forms a dense subset of A_0(K).
In addition, we will show that no formal power series is simultaneously universal for all such K.
The condition on the subspace Q in the main result of Chapter 3 is quite restrictive, but this should not be too surprising: The result applies to the largest possible class of compact sets.
In Chapter 4, we impose a further restriction on the compact sets under consideration, and this will allow us to weaken the condition on the subspace Q. The result that we are going to give is similar to one of those presented in the first chapter, namely the one due to Anderson. In his article “Müntz-Szasz type approximation and the angular growth of lacunary integral functions”, he gives a criterion for a subspace Q of P to be dense in A(K) where K is entirely contained in some closed sector with vertex at the origin.
We will consider compact sets with connected complement that are -- with the possible exception of the origin -- entirely contained in some open sector with vertex at the origin. What we are going to show is that if K\{0} is contained in an open sector of opening angle 2α and if Λ is some subset of the nonnegative integers, then the span of {z → z^λ : λ ϵ Λ} is dense in A(K) whenever 0 ϵ Λ and some Müntz-type condition is satisfied.
Conversely, we will show that if a similar condition is not satisfied, then we can always find a compact set K with connected complement such that K\{0} is contained in some open sector of opening angle 2α and such that the span of {z → z^λ : λ ϵ Λ} fails to be dense in A(K).
For decades, academics and practitioners aim to understand whether and how (economic) events affect firm value. Optimally, these events occur exogenously, i.e. suddenly and unexpectedly, so that an accurate evaluation of the effects on firm value can be conducted. However, recent studies show that even the evaluation of exogenous events is often prone to many challenges that can lead to diverse interpretations, resulting in heated debates. Recently, there have been intense debates in particular on the impact of takeover defenses and of Covid-19 on firm value. The announcements of takeover defenses and the propagation of Covid-19 are exogenous events that occur worldwide and are economically important, but have been insufficiently examined. By answering open research questions, this dissertation aims to provide a greater understanding about the heterogeneous effects that exogenous events such as the announcements of takeover defenses and the propagation of Covid-19 have on firm value. In addition, this dissertation analyzes the influence of certain firm characteristics on the effects of these two exogenous events and identifies influencing factors that explain contradictory results in the existing literature and thus can reconcile different views.
In common shape optimization routines, deformations of the computational mesh
usually suffer from decrease of mesh quality or even destruction of the mesh.
To mitigate this, we propose a theoretical framework using so-called pre-shape
spaces. This gives an opportunity for a unified theory of shape optimization, and of
problems related to parameterization and mesh quality. With this, we stay in the
free-form approach of shape optimization, in contrast to parameterized approaches
that limit possible shapes. The concept of pre-shape derivatives is defined, and
according structure and calculus theorems are derived, which generalize classical
shape optimization and its calculus. Tangential and normal directions are featured
in pre-shape derivatives, in contrast to classical shape derivatives featuring only
normal directions on shapes. Techniques from classical shape optimization and
calculus are shown to carry over to this framework, and are collected in generality
for future reference.
A pre-shape parameterization tracking problem class for mesh quality is in-
troduced, which is solvable by use of pre-shape derivatives. This class allows for
non-uniform user prescribed adaptations of the shape and hold-all domain meshes.
It acts as a regularizer for classical shape objectives. Existence of regularized solu-
tions is guaranteed, and corresponding optimal pre-shapes are shown to correspond
to optimal shapes of the original problem, which additionally achieve the user pre-
scribed parameterization.
We present shape gradient system modifications, which allow simultaneous nu-
merical shape optimization with mesh quality improvement. Further, consistency
of modified pre-shape gradient systems is established. The computational burden
of our approach is limited, since additional solution of possibly larger (non-)linear
systems for regularized shape gradients is not necessary. We implement and com-
pare these pre-shape gradient regularization approaches for a 2D problem, which
is prone to mesh degeneration. As our approach does not depend on the choice of
forms to represent shape gradients, we employ and compare weak linear elasticity
and weak quasilinear p-Laplacian pre-shape gradient representations.
We also introduce a Quasi-Newton-ADM inspired algorithm for mesh quality,
which guarantees sufficient adaption of meshes to user specification during the rou-
tines. It is applicable in addition to simultaneous mesh regularization techniques.
Unrelated to mesh regularization techniques, we consider shape optimization
problems constrained by elliptic variational inequalities of the first kind, so-called
obstacle-type problems. In general, standard necessary optimality conditions cannot
be formulated in a straightforward manner for such semi-smooth shape optimization
problems. Under appropriate assumptions, we prove existence and convergence of
adjoints for smooth regularizations of the VI-constraint. Moreover, we derive shape
derivatives for the regularized problem and prove convergence to a limit object.
Based on this analysis, an efficient optimization algorithm is devised and tested
numerically.
All previous pre-shape regularization techniques are applied to a variational
inequality constrained shape optimization problem, where we also create customized
targets for increased mesh adaptation of changing embedded shapes and active set
boundaries of the constraining variational inequality.
Hybrid Modelling in general, describes the combination of at least two different methods to solve one specific task. As far as this work is concerned, Hybrid Models describe an approach to combine sophisticated, well-studied mathematical methods with Deep Neural Networks to solve parameter estimation tasks. To combine these two methods, the data structure of artifi- cially generated acceleration data of an approximate vehicle model, the Quarter-Car-Model, is exploited. Acceleration of individual components within a coupled dynamical system, can be described as a second order ordinary differential equation, including velocity and dis- placement of coupled states, scaled by spring - and damping-coefficient of the system. An appropriate numerical integration scheme can then be used to simulate discrete acceleration profiles of the Quarter-Car-Model with a random variation of the parameters of the system. Given explicit knowledge about the data structure, one can then investigate under which con- ditions it is possible to estimate the parameters of the dynamical system for a set of randomly generated data samples. We test, if Neural Networks are capable to solve parameter estima- tion problems in general, or if they can be used to solve several sub-tasks, which support a state-of-the-art parameter estimation method. Hybrid Models are presented for parameter estimation under uncertainties, including for instance measurement noise or incompleteness of measurements, which combine knowledge about the data structure and several Neural Networks for robust parameter estimation within a dynamical system.
Zeitgleich mit stetig wachsenden gesellschaftlichen Herausforderungen haben im vergangenen Jahrzehnt Sozialunternehmen stark an Bedeutung gewonnen. Sozialunternehmen verfolgen das Ziel, mit unternehmerischen Mitteln gesellschaftliche Probleme zu lösen. Da der Fokus von Sozialunternehmen nicht hauptsächlich auf der eigenen Gewinnmaximierung liegt, haben sie oftmals Probleme, geeignete Unternehmensfinanzierungen zu erhalten und Wachstumspotenziale zu verwirklichen.
Zur Erlangung eines tiefergehenden Verständnisses des Phänomens der Sozialunternehmen untersucht der erste Teil dieser Dissertation anhand von zwei Studien auf der Basis eines Experiments das Entscheidungsverhalten der Investoren von Sozialunternehmen. Kapitel 2 betrachtet daher das Entscheidungsverhalten von Impact-Investoren. Der von diesen Investoren verfolgte Investmentansatz „Impact Investing“ geht über eine reine Orientierung an Renditen hinaus. Anhand eines Experiments mit 179 Impact Investoren, die insgesamt 4.296 Investitionsentscheidungen getroffen haben, identifiziert eine Conjoint-Studie deren wichtigste Entscheidungskriterien bei der Auswahl der Sozialunternehmen. Kapitel 3 analysiert mit dem Fokus auf sozialen Inkubatoren eine weitere spezifische Gruppe von Unterstützern von Sozialunternehmen. Dieses Kapitel veranschaulicht auf der Basis des Experiments die Motive und Entscheidungskriterien der Inkubatoren bei der Auswahl von Sozialunternehmen sowie die von ihnen angebotenen Formen der nichtfinanziellen Unterstützung. Die Ergebnisse zeigen unter anderem, dass die Motive von sozialen Inkubatoren bei der Unterstützung von Sozialunternehmen unter anderem gesellschaftlicher, finanzieller oder reputationsbezogener Natur sind.
Der zweite Teil erörtert auf der Basis von zwei quantitativ empirischen Studien, inwiefern die Registrierung von Markenrechten sich zur Messung sozialer Innovationen eignet und mit finanziellem und sozialem Wachstum von sozialen Startups in Verbindung steht. Kapitel 4 erörtert, inwiefern Markenregistrierungen zur Messung von sozialen Innovationen dienen können. Basierend auf einer Textanalyse der Webseiten von 925 Sozialunternehmen (> 35.000 Unterseiten) werden in einem ersten Schritt vier Dimensionen sozialer Innovationen (Innovations-, Impact-, Finanz- und Skalierbarkeitsdimension) ermittelt. Darauf aufbauend betrachtet dieses Kapitel, wie verschiedene Markencharakteristiken mit den Dimensionen sozialer Innovationen zusammenhängen. Die Ergebnisse zeigen, dass insbesondere die Anzahl an registrierten Marken als Indikator für soziale Innovationen (alle Dimensionen) dient. Weiterhin spielt die geografische Reichweite der registrierten Marken eine wichtige Rolle. Aufbauend auf den Ergebnissen von Kapitel 4 untersucht Kapitel 5 den Einfluss von Markenregistrierungen in frühen Unternehmensphasen auf die weitere Entwicklung der hybriden Ergebnisse von sozialen Startups. Im Detail argumentiert Kapitel 5, dass sowohl die Registrierung von Marken an sich als auch deren verschiedene Charakteristiken unterschiedlich mit den sozialen und ökonomischen Ergebnissen von sozialen Startups in Verbindung stehen. Anhand eines Datensatzes von 485 Sozialunternehmen zeigen die Analysen aus Kapitel 5, dass soziale Startups mit einer registrierten Marke ein vergleichsweise höheres Mitarbeiterwachstum aufweisen und einen größeren gesellschaftlichen Beitrag leisten.
Die Ergebnisse dieser Dissertation weiten die Forschung im Social Entrepreneurship-Bereich weiter aus und bieten zahlreiche Implikationen für die Praxis. Während Kapitel 2 und 3 das Verständnis über die Eigenschaften von nichtfinanziellen und finanziellen Unterstützungsorganisationen von Sozialunternehmen vergrößern, schaffen Kapitel 4 und 5 ein größeres Verständnis über die Bedeutung von Markenanmeldungen für Sozialunternehmen.
Modellbildung und Umsetzung von Methoden zur energieeffizienten Nutzung von Containertechnologien
(2021)
Die Nutzung von Cloud-Software und skalierten Web-Apps sowie Web-Services hat in den letzten Jahren extrem zugenommen, was zu einem Anstieg der Hochleistungs-Cloud-Rechenzentren führt. Neben der Verbesserung der Dienste spiegelt sich dies auch im weltweiten Stromverbrauch von Rechenzentren wider, der derzeit etwas mehr als 1% (entspricht etwa 200 TWh) beträgt. Prognosen sagen für die kommenden Jahre einen massiven Anstieg des Stromverbrauchs von Cloud-Rechenzentren voraus. Grundlage dieser Bewegung ist die Beschleunigung von Administration und Entwicklung, die unter anderem durch den Einsatz von Containern entsteht. Als Basis für Millionen von Web-Apps und -Services beschleunigen sie die Skalierung, Bereitstellung und Aktualisierung von Cloud-Diensten.
In dieser Arbeit wird aufgezeigt, dass Container zusätzlich zu ihren vielen technischen Vorteilen Möglichkeiten zur Reduzierung des Energieverbrauchs von Cloud-Rechenzentren bieten, die aus
einer ineffizienten Konfiguration von Containern sowie Container-Laufzeitumgebungen resultieren. Basierend auf einer Umfrage und einer Auswertung geeigneter Literatur werden in einem ersten Schritt wahrscheinliche Probleme beim Einsatz von Containern aufgedeckt. Weiterhin wird die Sensibilität von Administratoren und Entwicklern bezüglich des Energieverbrauchs von Container-Software ermittelt. Aufbauend auf den Ergebnissen der Umfrage und der Auswertung werden anhand von Standardszenarien im Containerumfeld die Komponenten des de facto Standards Docker untersucht. Anschließend wird ein Modell, bestehend aus Messmethodik, Empfehlungen für eine effiziente
Konfiguration von Containern und Tools, beschrieben. Die Messmethodik sollte einfach anwendbar sein und gängige Technologien in Rechenzentren unterstützen. Darüber hinaus geben die Handlungsempfehlungen sowohl Entwicklern als auch Administratoren die Möglichkeit zu entscheiden, welche Komponenten von Docker im Sinne eines energieeffizienten Einsatzes und in Abhängigkeit vom Einsatzszenario der Container genutzt werden sollten und welche weggelassen werden könnten. Die resultierenden Container können im Sinne der Energieeffizienz auf Servern und gleichermaßen auf PCs und Embedded Systems (als Teil von IoT und Edge Cloud) eingesetzt werden und somit nicht nur dem zuvor beschriebenen Problem in der Cloud entgegenwirken.
Die Arbeit beschäftigt sich zudem mit dem Verhalten von skalierten Webanwendungen. Gängige Orchestrierungswerkzeuge definieren statische Skalierungspunkte für Anwendungen, die in den meisten Fällen auf der CPU-Auslastung basieren. Es wird dargestellt, dass dabei weder die tatsächliche Erreichbarkeit noch der Stromverbrauch der Anwendungen berücksichtigt werden. Es wird der Autoscaler des Open-Source-Container-Orchestrierungswerkzeugs Kubernetes betrachtet, der um ein neu entwickeltes Werkzeug erweitert wird. Es wird deutlich, dass eine dynamische Anpassung der Skalierungspunkte durch eine Vorabauswertung gängiger Nutzungsszenarien sowie Informationen über deren Stromverbrauch und die Erreichbarkeit bei steigender Last erreicht werden kann.
Schließlich folgt eine empirische Untersuchung des generierten Modells in Form von drei Simulationen, die die Auswirkungen auf den Energieverbrauch von Cloud-Rechenzentren darlegen sollen.