Refine
Keywords
- Funktionelle NMR-Tomographie (1)
- Gegenstimulation (1)
- Gehirn (1)
- Modulation (1)
- Schmerz (1)
- brain (1)
- counter-stimulation (1)
- fMRI (1)
- fMRT (1)
- modulation (1)
Although it has been demonstrated that nociceptive processing can be modulated by heterotopically and concurrently applied noxious stimuli, the nature of brain processes involved in this percept modulation in healthy subjects remains elusive. Using functional magnetic resonance imaging (fMRI) we investigated the effect of noxious counter-stimulation on pain processing. FMRI scans (1.5 T; block-design) were performed in 34 healthy subjects (median age: 23.5 years; range: 20-31 yrs.) during combined and single application (duration: 15 s; ISI=36 s incl. 6 s rating time) of noxious interdigital-web pinching (intensity range: 6-15 N) and contact-heat (45-49 -°C) presented in pseudo-randomized order during two runs separated by approx. 15 min with individually adjusted equi-intense stimuli. In order to control for attention artifacts, subjects were instructed to maintain their focus either on the mechanical or on the thermal pain stimulus. Changes in subjective pain intensity were computed as percent differences (∆%) in pain ratings between single and heterotopic stimulation for both fMRI runs, resulting in two subgroups showing a relative pain increase (subgroup P-IN, N=10) vs. decrease (subgroup P-DE, N=12). Second level and Region of Interest analysis conducted for both subgroups separately revealed that during heterotopic noxious counter-stimulation, subjects with relative pain decrease showed stronger and more widespread brain activations compared to subjects with relative pain increase in pain processing regions as well as a fronto-parietal network. Median-split regression analyses revealed a modulatory effect of prefrontal activation on connectivity between the thalamus and midbrain/pons, supporting the proposed involvement of prefrontal cortex regions in pain modulation. Furthermore, the mid-sagittal size of the total corpus callosum and five of its subareas were measured from the in vivo magnetic resonance imaging (MRI) recordings. A significantly larger relative truncus size (P=.04) was identified in participants reporting a relative decrease of subjective pain intensity during counter-stimulation, when compared to subjects experiencing a relative pain increase. The above subgroup differences observed in functional and structural imaging data are discussed with consideration of potential differences in cognitive and emotional aspects of pain modulation.