Refine
Keywords
- Change (1)
- Continuity (1)
- Intelligence profiles (1)
- Intelligenztest (1)
- Reliabilität (1)
- Stability (1)
- Statistik (1)
- Test-retest (1)
- Testergebnis (1)
- crystallized intelligence (1)
Institute
- Psychologie (2) (remove)
The temporal stability of psychological test scores is one prerequisite for their practical usability. This is especially true for intelligence test scores. In educational contexts, high stakes decisions with long-term consequences, such as placement in special education programs, are often based on intelligence test results. There are four different types of temporal stability: mean-level change, individual-level change, differential continuity, and ipsative continuity. We present statistical methods for investigating each type of stability. Where necessary, the methods were adapted for the specific challenges posed by intelligence research (e.g., controlling for general intelligence in lower order test scores). We provide step-by-step guidance for the application of the statistical methods and apply them to a real data set of 114 gifted students tested twice with a test-retest interval of 6 months.
• Four different types of stability need to be investigated for a full picture of temporal stability in psychological research
• Selection and adaption of the methods for the use in intelligence research
• Complete protocol of the implementation
Investment theory and related theoretical approaches suggest a dynamic interplay between crystallized intelligence, fluid intelligence, and investment traits like need for cognition. Although cross-sectional studies have found positive correlations between these constructs, longitudinal research testing all of their relations over time is scarce. In our pre-registered longitudinal study, we examined whether initial levels of crystallized intelligence, fluid intelligence, and need for cognition predicted changes in each other. We analyzed data from 341 German students in grades 7–9 who were assessed twice, one year apart. Using multi-process latent change score models, we found that changes in fluid intelligence were positively predicted by prior need for cognition, and changes in need for cognition were positively predicted by prior fluid intelligence. Changes in crystallized intelligence were not significantly predicted by prior Gf, prior NFC, or their interaction, contrary to theoretical assumptions. This pattern of results was largely replicated in a model including all constructs simultaneously. Our findings support the notion that intelligence and investment traits, particularly need for cognition, positively interact during cognitive development, but this interplay was unexpectedly limited to Gf.