Refine
Keywords
- Aggression (1)
- Annäherungs-Vermeidungs-Motivation (1)
- Approach-avoidance motivation (1)
- Cortisol (1)
- Ereigniskorreliertes Potenzial (1)
- Hydrocortison (1)
- Stress (1)
- Testosteron (1)
- cognitive control (1)
- cortisol (1)
The stress hormone cortisol as the end-product of the hypothalamic-pituitary-adrenal (HPA) axis has been found to play a crucial role in the release of aggressive behavior (Kruk et al., 2004; Böhnke et al., 2010). In order to further explore potential mechanisms underlying the relationship between stress and aggression, such as changes in (social) information processing, we conducted two experimental studies that are presented in this thesis. In both studies, acute stress was induced by means of the Socially Evaluated Cold Pressor Test (SECP) designed by Schwabe et al. (2008). Stressed participants were classified as either cortisol responders or nonresponders depending on their rise in cortisol following the stressor. Moreover, basal HPA axis activity was measured prior to the experimental sessions and EEG was recorded throughout the experiments. The first study dealt with the influence of acute stress on cognitive control processes. 41 healthy male participants were assigned to either the stress condition or the non-stressful control procedure of the SECP. Before as well as after the stress induction, all participants performed a cued task-switching paradigm in order to measure cognitive control processes. Results revealed a significant influence of acute and basal cortisol levels, respectively, on the motor preparation of the upcoming behavioral response, that was reflected in changes in the magnitude of the terminal Contingent Negative Variation (CNV). In the second study, the effect of acute stress and subsequent social provocation on approach-avoidance motivation was examined. 72 healthy students (36 males, 36 females) took part in the study. They performed an approach-avoidance task, using emotional facial expressions as stimuli, before as well as after the experimental manipulation of acute stress (again via the SECP) and social provocation realized by means of the Taylor Aggression Paradigm (Taylor, 1967). Additionally to salivary cortisol, testosterone samples were collected at several points in time during the experimental session. Results indicated a positive relationship between acute testosterone levels and the motivation to approach social threat stimuli in highly provoked cortisol responders. Similar results were found when the testosterone-to-cortisol ratio at baseline was taken into account instead of acute testosterone levels. Moreover, brain activity during the approach-avoidance task was significantly influenced by acute stress and social provocation, as reflected in reductions of early (P2) as well as of later (P3) ERP components in highly provoked cortisol responders. This may indicate a less accurate, rapid processing of socially relevant stimuli due to an acute increase in cortisol and subsequent social provocation. In conclusion, the two studies presented in this thesis provide evidence for significant changes in information processing due to acute stress, basal cortisol levels and social provocation, suggesting an enhanced preparation for a rapid behavioral response in the sense of a fight-or-flight reaction. These results confirm the model of Kruk et al. (2004) proposing a mediating role of changed information processes in the stress-aggression-link.