Refine
Keywords
- In-vitro-Kultur (1)
- Inhalation (1)
- Inhalation Toxicology (1)
- Lunge (1)
- Toxikologie (1)
- cell culture (1)
- in vitro (1)
- lung (1)
Exposure to fine and ultra-fine environmental particles is still a problem of concern in many industrialized parts of the world and the intensified use of nanotechnology may further increase exposure to small particles. Since many years air pollution is recognized as a critical problem in western countries, which led to rigorous regulation of air quality and the introduction of strict guidelines. However, the upper thresholds for particulates in ambient air recommended by the world health organization are often exceeded several times in newly industrialized countries. Such high levels of air pollution have the potential to induce adverse effects on human health. The response triggered by air pollutants is not limited to local effects of the respiratory system but is often systemic, resulting in endothelial dysfunction or atherosclerotic malady. The link between air pollution and cardiovascular disease is now accepted by the scientific community but the underlying mechanisms responsible for the pro-atherogenic potential still need to be unraveled in detail. Based on the results from in- vivo and in vitro studies the production of reactive oxygen species due to exposure to particles is the most important mechanism to explain the observed adverse effects. However, the doses that were applied in many in vivo and in vitro studies are far beyond the range of what humans are exposed to and there is the need for more realistic exposure studies. Complex in vitro coculture systems may be valuable tools to study particle-induced processes and to extrapolate effects of particles on the lung. One of the objectives of this PhD thesis was the establishment and further improvement of a complex coculture system initially described by Alfaro-Moreno et al. [1]. The system is composed of an alveolar type-II cell line (A549), differentiated macrophage-like cells (THP-1), mast cells (HMC-1) and endothelial cells (EA.hy 926), seeded in a 3D-orientation on a microporous membrane to mimic the cell response of the alveolar surface in vitro in conjunction with native aerosol exposure (VitrocellTM chamber). The tetraculture system was carefully characterized to ensure its performance and repeatability of results. The spatial distribution of the cells in the tetraculture was analyzed by confocal laser scanning microscopy (CLSM), showing a confluent layer of endothelial and epithelial cells on both sides of the Transwellâ„¢. Macrophage-like cells and mast cells can be found on top of the epithelial cells. The latter cells formed colonies under submerged conditions, which disappeared at the air-liquid-interface (ALI). The VitrocellTM aerosol exposure system was not significantly influencing the viability. Using this system, cells were exposed to an aerosol of 50 nm SiO2-Rhodamine nanoparticles (NPs) in PBS. The distribution of the NPs in the tetraculture after exposure was evaluated by CLSM. Fluorescence from internalized particles was detected in CD11b-positive THP-1 cells only. Furthermore, all cell lines were found to be able to respond to xenobiotic model compounds, such as benzo[a]pyrene (B[a]P) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with the upregulation of CYP1 mRNA. With this tetraculture system the response of the endothelial part of the alveolar barrier was studied in- vitro in a still realistic exposure scenario representing the conditions for a polluted situation without direct exposure of endothelial cells. After exposure to diesel exhaust particulate matter (DEPM) the expression of different anti-oxidant target genes and inflammatory genes such as NAD(P)H dehydrogenase quinone 1 (NQO1), superoxide dismutase 1 (SOD1) and heme oxygenase 1 (HMOX1), as well as the nuclear translocation nuclear factor erythroid-derived 2 (Nrf2) was evaluated. In addition, the potential of DEPM to induce the upregulation of CYP1A1 mRNA in the endothelium was analyzed. DEPM exposure led not to an upregulation of the anti-oxidant or inflammatory target genes, but to clear nuclear translocation of Nrf2. The endothelial cells responded to the DEPM treatment also with the upregulation of CYP1A1 mRNA and nuclear translocation of the aryl hydrocarbon receptor (AhR). Overall, DEPM triggered a response in the endothelial cells after indirect exposure of the tetraculture system to low doses of DEPM, underlining the sensitivity of ALI exposure systems. The use of the tetraculture together with the native aerosol exposure equipment may finally lead to a more realistic judgment regarding the hazard of new compounds and/or new nano-scaled materials in the future. For the first time, it was possible to study the response of the endothelial cells of the alveolar barrier in vitro in a realistic exposure scenario avoiding direct exposure of endothelial cells to high amounts of particulates.