Refine
Keywords
- Physiologische Psychologie (1) (remove)
Aggression is one of the most researched topics in psychology. This is understandable, since aggression behavior does a lot of harm to individuals and groups. A lot is known already about the biology of aggression, but one system that seems to be of vital importance in animals has largely been overlooked: the hypothalamic-pituitary-adrenal (HPA) axis. Menno Kruk and Jószef Haller and their research teams developed rodent models of adaptive, normal, and abnormal aggressive behavior. They found the acute HPA axis (re)activity, but also chronic basal levels to be causally relevant in the elicitation and escalation of aggressive behavior. As a mediating variable, changes in the processing of relevant social information is proposed, although this could not be tested in animals. In humans, not a lot of research has been done, but there is evidence for both the association between acute and basal cortisol levels in (abnormal) aggression. However, not many of these studies have been experimental of nature. rnrnOur aim was to add to the understanding of both basal chronic levels of HPA axis activity, as well as acute levels in the formation of aggressive behavior. Therefore, we did two experiments, both with healthy student samples. In both studies we induced aggression with a well validated paradigm from social psychology: the Taylor Aggression Paradigm. Half of the subjects, however, only went through a non-provoking control condition. We measured trait basal levels of HPA axis activity on three days prior. We took several cortisol samples before, during, and after the task. After the induction of aggression, we measured the behavioral and electrophysiological brain response to relevant social stimuli, i.e., emotional facial expressions embedded in an emotional Stroop task. In the second study, we pharmacologically manipulated cortisol levels 60min before the beginning of the experiment. To do that, half of the subjects were administered 20mg of hydrocortisone, which elevates circulating cortisol levels (cortisol group), the other half was administered a placebo (placebo group). Results showed that acute HPA axis activity is indeed relevant for aggressive behavior. We found in Study 1 a difference in cortisol levels after the aggression induction in the provoked group compared to the non-provoked group (i.e., a heightened reactivity of the HPA axis). However, this could not be replicated in Study 2. Furthermore, the pharmacological elevation of cortisol levels led to an increase in aggressive behavior in women compared to the placebo group. There were no effects in men, so that while men were significantly more aggressive than women in the placebo group, they were equally aggressive in the cortisol group. Furthermore, there was an interaction of cortisol treatment with block of the Taylor Aggression Paradigm, in that the cortisol group was significantly more aggressive in the third block of the task. Concerning basal HPA axis activity, we found an effect on aggressive behavior in both studies, albeit more consistently in women and in the provoked and non-provoked groups. However, the effect was not apparent in the cortisol group. After the aggressive encounter, information processing patterns were changed in the provoked compared to the non-provoked group for all facial expressions, especially anger. These results indicate that the HPA axis plays an important role in the formation of aggressive behavior in humans, as well. Importantly, different changes within the system, be it basal or acute, are associated with the same outcome in this task. More studies are needed, however, to better understand the role that each plays in different kinds of aggressive behavior, and the role information processing plays as a possible mediating variable. This extensive knowledge is necessary for better behavioral interventions.