Refine
Keywords
- remote sensing (1) (remove)
Time series archives of remotely sensed data offer many possibilities to observe and analyse dynamic environmental processes at the Earth- surface. Based on these hypertemporal archives, which offer continuous observations of vegetation indices, typically at repetition rates from one to two weeks, sets of phenological parameters or metrics can be derived. Examples of such parameters are the beginning and end of the annual growing period, as well as its length. Even though these parameters do not correspond exactly to conventional observations of phenological events, they nevertheless provide indications of the dynamic processes occurring in the biosphere. The development of robust algorithms for the derivation of phenological metrics can be challenging. Currently, such algorithms are most commonly based on digital filters or the Fourier analysis of time series. Polynomial spline models offer a useful alternative to existing methods. The possibilities of using spline models in the analytical description of time series are numerous, and their specific mathematical properties may help to avoid known problems occurring with the more common methods for deriving phenological metrics. Based on a selection of different polynomial spline models suitable for the analysis of remotely sensed time series of vegetation indices, a method to derive various phenological parameters from such time series was developed and implemented in this work. Using an example data set from an intensively used agricultural area showing highly dynamic variations in vegetation phenology, the newly developed method was verified by a comparison of the results of the spline based approach to the results of two alternative, well established methods.