Refine
Keywords
- Wechselkurs (2)
- Common Liability (1)
- Coordination (1)
- Datenerhebung (1)
- Density Estimation (1)
- Devisenhandel (1)
- Entscheidung (1)
- Europäische Union (1)
- Exchange Rate (1)
- Exchange Rates (1)
Estimation and therefore prediction -- both in traditional statistics and machine learning -- encounters often problems when done on survey data, i.e. on data gathered from a random subset of a finite population. Additional to the stochastic generation of the data in the finite population (based on a superpopulation model), the subsetting represents a second randomization process, and adds further noise to the estimation. The character and impact of the additional noise on the estimation procedure depends on the specific probability law for subsetting, i.e. the survey design. Especially when the design is complex or the population data is not generated by a Gaussian distribution, established methods must be re-thought. Both phenomena can be found in business surveys, and their combined occurrence poses challenges to the estimation.
This work introduces selected topics linked to relevant use cases of business surveys and discusses the role of survey design therein: First, consider micro-econometrics using business surveys. Regression analysis under the peculiarities of non-normal data and complex survey design is discussed. The focus lies on mixed models, which are able to capture unobserved heterogeneity e.g. between economic sectors, when the dependent variable is not conditionally normally distributed. An algorithm for survey-weighted model estimation in this setting is provided and applied to business data.
Second, in official statistics, the classical sampling randomization and estimators for finite population totals are relevant. The variance estimation of estimators for (finite) population totals plays a major role in this framework in order to decide on the reliability of survey data. When the survey design is complex, and the number of variables is large for which an estimated total is required, generalized variance functions are popular for variance estimation. They allow to circumvent cumbersome theoretical design-based variance formulae or computer-intensive resampling. A synthesis of the superpopulation-based motivation and the survey framework is elaborated. To the author's knowledge, such a synthesis is studied for the first time both theoretically and empirically.
Third, the self-organizing map -- an unsupervised machine learning algorithm for data visualization, clustering and even probability estimation -- is introduced. A link to Markov random fields is outlined, which to the author's knowledge has not yet been established, and a density estimator is derived. The latter is evaluated in terms of a Monte-Carlo simulation and then applied to real world business data.
Structured Eurobonds - Optimal Construction, Impact on the Euro and the Influence of Interest Rates
(2020)
Structured Eurobonds are a prominent topic in the discussions how to complete the monetary and fiscal union. This work sheds light on several issues going hand in hand with the introduction of common bonds. At first a crucial question is on the optimal construction, e.g. what is the optimal common liability. Other questions that arise belong to the time after the introduction. The impact on several exchnage rates is examined in this work. Finally an approximation bias in forward-looking DSGE models is quantified which would lead to an adjustment of central bank interest rates and therefore has an impact on the other two topics.
In this dissertation, I analyze how large players in financial markets exert influence on smaller players and how this affects the decisions of the large ones. I focus on how the large players process information in an uncertain environment, form expectations and communicate these to smaller players through their actions. I examine these relationships empirically in the foreign exchange market and in the context of a game-theoretic model of an investment project.
In Chapter 2, I investigate the relationship between the foreign exchange trading activity of large US-based market participants and the volatility of the nominal spot exchange rate. Using a novel dataset, I utilize the weekly growth rate of aggregate foreign currency positions of major market participants to proxy trading activity in the foreign exchange market. By estimating the heterogeneous autoregressive model of realized volatility (HAR-RV), I find evidence of a positive relationship between trading activity and volatility, which is mainly driven by unexpected changes in trading activity and is asymmetric for some of the currencies considered. My results contribute to the understanding of the drivers of exchange rate volatility and the role of large players in the flow of information in financial markets.
In Chapters 3 and 4, I consider a sequential global game of an investment project to examine how a large creditor influences the decisions of small creditors with her lending decision. I pay particular attention to the timing of the large player’s decision, i.e. whether she makes her decision to roll over a credit before or after the small players. I show that she faces a trade-off between signaling to and learning from small creditors. By being a focal point for coordination, her actions have a substantial impact on the probability of coordination failure and the failure of the investment project. I investigate the sensitivity of the equilibrium by comparing settings with perfect and imperfect learning. The results highlight the importance of signaling and provide a new perspective on the idea of catalytic finance and the influence of a lender-of-last-resort in self-fulfilling debt crises.