Refine
Year of publication
- 2023 (5) (remove)
Keywords
- survey statistics (3)
- Anonymisierung (1)
- Column generation (1)
- Data anonymization (1)
- Datenerhebung (1)
- Demographische Simulationen (1)
- Deutschland (1)
- Discrete optimization (1)
- Erwerbstätigkeitsstatistik (1)
- Frame Mathematik (1)
Institute
Das Ziel dynamischer Mikrosimulationen ist es, die Entwicklung von Systemen über das Verhalten der einzelnen enthaltenen Bestandteile zu simulieren, um umfassende szenariobasierte Analysen zu ermöglichen. Im Bereich der Wirtschafts- und Sozialwissenschaften wird der Fokus üblicherweise auf Populationen bestehend aus Personen und Haushalten gelegt. Da politische und wirtschaftliche Entscheidungsprozesse meist auf lokaler Ebene getroffen werden, bedarf es zudem kleinräumiger Informationen, um gezielte Handlungsempfehlungen ableiten zu können. Das stellt Forschende wiederum vor große Herausforderungen im Erstellungsprozess regionalisierter Simulationsmodelle. Dieser Prozess reicht von der Generierung geeigneter Ausgangsdatensätze über die Erfassung und Umsetzung der dynamischen Komponenten bis hin zur Auswertung der Ergebnisse und Quantifizierung von Unsicherheiten. Im Rahmen dieser Arbeit werden ausgewählte Komponenten, die für regionalisierte Mikrosimulationen von besonderer Relevanz sind, beschrieben und systematisch analysiert.
Zunächst werden in Kapitel 2 theoretische und methodische Aspekte von Mikrosimulationen vorgestellt, um einen umfassenden Überblick über verschiedene Arten und Möglichkeiten der Umsetzung dynamischer Modellierungen zu geben. Im Fokus stehen dabei die Grundlagen der Erfassung und Simulation von Zuständen und Zustandsänderungen sowie die damit verbundenen strukturellen Aspekte im Simulationsprozess.
Sowohl für die Simulation von Zustandsänderungen als auch für die Erweiterung der Datenbasis werden primär logistische Regressionsmodelle zur Erfassung und anschließenden wahrscheinlichkeitsbasierten Vorhersage der Bevölkerungsstrukturen auf Mikroebene herangezogen. Die Schätzung beruht insbesondere auf Stichprobendaten, die in der Regel neben einem eingeschränktem Stichprobenumfang keine oder nur unzureichende regionale Differenzierungen zulassen. Daher können bei der Vorhersage von Wahrscheinlichkeiten erhebliche Differenzen zu bekannten Totalwerten entstehen. Um eine Harmonisierung mit den Totalwerten zu erhalten, lassen sich Methoden zur Anpassung von Wahrscheinlichkeiten – sogenannte Alignmentmethoden – anwenden. In der Literatur werden zwar unterschiedliche Möglichkeiten beschrieben, über die Auswirkungen dieser Verfahren auf die Güte der Modelle ist jedoch kaum etwas bekannt. Zur Beurteilung verschiedener Techniken werden diese im Rahmen von Kapitel 3 in umfassenden Simulationsstudien unter verschiedenen Szenarien umgesetzt. Hierbei kann gezeigt werden, dass durch die Einbindung zusätzlicher Informationen im Modellierungsprozess deutliche Verbesserungen sowohl bei der Schätzung der Parameter als auch bei der Vorhersage der Wahrscheinlichkeiten erzielt werden können. Zudem lassen sich dadurch auch bei fehlenden regionalen Identifikatoren in den Modellierungsdaten kleinräumige Wahrscheinlichkeiten erzeugen. Insbesondere die Maximierung der Likelihood des zugrundeliegenden Regressionsmodells unter der Nebenbedingung, dass die bekannten Totalwerte eingehalten werden, weist in allen Simulationsstudien überaus gute Ergebnisse auf.
Als eine der einflussreichsten Komponenten in regionalisierten Mikrosimulationen erweist sich die Umsetzung regionaler Mobilität. Gleichzeitig finden Wanderungen in vielen Mikrosimulationsmodellen keine oder nur unzureichende Beachtung. Durch den unmittelbaren Einfluss auf die gesamte Bevölkerungsstruktur führt ein Ignorieren jedoch bereits bei einem kurzen Simulationshorizont zu starken Verzerrungen. Während für globale Modelle die Integration von Wanderungsbewegungen über Landesgrenzen ausreicht, müssen in regionalisierten Modellen auch Binnenwanderungsbewegungen möglichst umfassend nachgebildet werden. Zu diesem Zweck werden in Kapitel 4 Konzepte für Wanderungsmodule erstellt, die zum einen eine unabhängige Simulation auf regionalen Subpopulationen und zum anderen eine umfassende Nachbildung von Wanderungsbewegungen innerhalb der gesamten Population zulassen. Um eine Berücksichtigung von Haushaltsstrukturen zu ermöglichen und die Plausibilität der Daten zu gewährleisten, wird ein Algorithmus zur Kalibrierung von Haushaltswahrscheinlichkeiten vorgeschlagen, der die Einhaltung von Benchmarks auf Individualebene ermöglicht. Über die retrospektive Evaluation der simulierten Migrationsbewegungen wird die Funktionalität der Wanderdungskonzepte verdeutlicht. Darüber hinaus werden über die Fortschreibung der Population in zukünftige Perioden divergente Entwicklungen der Einwohnerzahlen durch verschiedene Konzepte der Wanderungen analysiert.
Eine besondere Herausforderung in dynamischen Mikrosimulationen stellt die Erfassung von Unsicherheiten dar. Durch die Komplexität der gesamten Struktur und die Heterogenität der Komponenten ist die Anwendung klassischer Methoden zur Messung von Unsicherheiten oft nicht mehr möglich. Zur Quantifizierung verschiedener Einflussfaktoren werden in Kapitel 5 varianzbasierte Sensitivitätsanalysen vorgeschlagen, die aufgrund ihrer enormen Flexibilität auch direkte Vergleiche zwischen unterschiedlichsten Komponenten ermöglichen. Dabei erweisen sich Sensitivitätsanalysen nicht nur für die Erfassung von Unsicherheiten, sondern auch für die direkte Analyse verschiedener Szenarien, insbesondere zur Evaluation gemeinsamer Effekte, als überaus geeignet. In Simulationsstudien wird die Anwendung im konkreten Kontext dynamischer Modelle veranschaulicht. Dadurch wird deutlich, dass zum einen große Unterschiede hinsichtlich verschiedener Zielwerte und Simulationsperioden auftreten, zum anderen aber auch immer der Grad an regionaler Differenzierung berücksichtigt werden muss.
Kapitel 6 fasst die Erkenntnisse der vorliegenden Arbeit zusammen und gibt einen Ausblick auf zukünftige Forschungspotentiale.
Official business surveys form the basis for national and regional business statistics and are thus of great importance for analysing the state and performance of the economy. However, both the heterogeneity of business data and their high dynamics pose a particular challenge to the feasibility of sampling and the quality of the resulting estimates. A widely used sampling frame for creating the design of an official business survey is an extract from an official business register. However, if this frame does not accurately represent the target population, frame errors arise. Amplified by the heterogeneity and dynamics of business populations, these errors can significantly affect the estimation quality and lead to inefficiencies and biases. This dissertation therefore deals with design-based methods for optimising business surveys with respect to different types of frame errors.
First, methods for adjusting the sampling design of business surveys are addressed. These approaches integrate auxiliary information about the expected structures of frame errors into the sampling design. The aim is to increase the number of sampled businesses that are subject to frame errors. The element-specific frame error probability is estimated based on auxiliary information about frame errors observed in previous samples. The approaches discussed consider different types of frame errors and can be incorporated into predefined designs with fixed strata.
As the second main pillar of this work, methods for adjusting weights to correct for frame errors during estimation are developed and investigated. As a result of frame errors, the assumptions under which the original design weights were determined based on the sampling design no longer hold. The developed methods correct the design weights taking into account the errors identified for sampled elements. Case-number-based reweighting approaches, on the one hand, attempt to reconstruct the unknown size of the individual strata in the target population. In the context of weight smoothing methods, on the other hand, design weights are modelled and smoothed as a function of target or auxiliary variables. This serves to avoid inefficiencies in the estimation due to highly scattering weights or weak correlations between weights and target variables. In addition, possibilities of correcting frame errors by calibration weighting are elaborated. Especially when the sampling frame shows over- and/or undercoverage, the inclusion of external auxiliary information can provide a significant improvement of the estimation quality. For those methods whose quality cannot be measured using standard procedures, a procedure for estimating the variance based on a rescaling bootstrap is proposed. This enables an assessment of the estimation quality when using the methods in practice.
In the context of two extensive simulation studies, the methods presented in this dissertation are evaluated and compared with each other. First, in the environment of an experimental simulation, it is assessed which approaches are particularly suitable with regard to different data situations. In a second simulation study, which is based on the structural survey in the services sector, the applicability of the methods in practice is evaluated under realistic conditions.
Survey data can be viewed as incomplete or partially missing from a variety of perspectives and there are different ways of dealing with this kind of data in the prediction and the estimation of economic quantities. In this thesis, we present two selected research contexts in which the prediction or estimation of economic quantities is examined under incomplete survey data.
These contexts are first the investigation of composite estimators in the German Microcensus (Chapters 3 and 4) and second extensions of multivariate Fay-Herriot (MFH) models (Chapters 5 and 6), which are applied to small area problems.
Composite estimators are estimation methods that take into account the sample overlap in rotating panel surveys such as the German Microcensus in order to stabilise the estimation of the statistics of interest (e.g. employment statistics). Due to the partial sample overlaps, information from previous samples is only available for some of the respondents, so the data are partially missing.
MFH models are model-based estimation methods that work with aggregated survey data in order to obtain more precise estimation results for small area problems compared to classical estimation methods. In these models, several variables of interest are modelled simultaneously. The survey estimates of these variables, which are used as input in the MFH models, are often partially missing. If the domains of interest are not explicitly accounted for in a sampling design, the sizes of the samples allocated to them can, by chance, be small. As a result, it can happen that either no estimates can be calculated at all or that the estimated values are not published by statistical offices because their variances are too large.
Non-probability sampling is a topic of growing relevance, especially due to its occurrence in the context of new emerging data sources like web surveys and Big Data.
This thesis addresses statistical challenges arising from non-probability samples, where unknown or uncontrolled sampling mechanisms raise concerns in terms of data quality and representativity.
Various methods to quantify and reduce the potential selectivity and biases of non-probability samples in estimation and inference are discussed. The thesis introduces new forms of prediction and weighting methods, namely
a) semi-parametric artificial neural networks (ANNs) that integrate B-spline layers with optimal knot positioning in the general structure and fitting procedure of artificial neural networks, and
b) calibrated semi-parametric ANNs that determine weights for non-probability samples by integrating an ANN as response model with calibration constraints for totals, covariances and correlations.
Custom-made computational implementations are developed for fitting (calibrated) semi-parametric ANNs by means of stochastic gradient descent, BFGS and sequential quadratic programming algorithms.
The performance of all the discussed methods is evaluated and compared for a bandwidth of non-probability sampling scenarios in a Monte Carlo simulation study as well as an application to a real non-probability sample, the WageIndicator web survey.
Potentials and limitations of the different methods for dealing with the challenges of non-probability sampling under various circumstances are highlighted. It is shown that the best strategy for using non-probability samples heavily depends on the particular selection mechanism, research interest and available auxiliary information.
Nevertheless, the findings show that existing as well as newly proposed methods can be used to ease or even fully counterbalance the issues of non-probability samples and highlight the conditions under which this is possible.
The publication of statistical databases is subject to legal regulations, e.g. national statistical offices are only allowed to publish data if the data cannot be attributed to individuals. Achieving this privacy standard requires anonymizing the data prior to publication. However, data anonymization inevitably leads to a loss of information, which should be kept minimal. In this thesis, we analyze the anonymization method SAFE used in the German census in 2011 and we propose a novel integer programming-based anonymization method for nominal data.
In the first part of this thesis, we prove that a fundamental variant of the underlying SAFE optimization problem is NP-hard. This justifies the use of heuristic approaches for large data sets. In the second part, we propose a new anonymization method belonging to microaggregation methods, specifically designed for nominal data. This microaggregation method replaces rows in a microdata set with representative values to achieve k-anonymity, ensuring each data row is identical to at least k − 1 other rows. In addition to the overall dissimilarities of the data rows, the method accounts for errors in resulting frequency tables, which are of high interest for nominal data in practice. The method employs a typical two-step structure: initially partitioning the data set into clusters and subsequently replacing all cluster elements with representative values to achieve k-anonymity. For the partitioning step, we propose a column generation scheme followed by a heuristic to obtain an integer solution, which is based on the dual information. For the aggregation step, we present a mixed-integer problem formulation to find cluster representatives. To this end, we take errors in a subset of frequency tables into account. Furthermore, we show a reformulation of the problem to a minimum edge-weighted maximal clique problem in a multipartite graph, which allows for a different perspective on the problem. Moreover, we formulate a mixed-integer program, which combines the partitioning and the aggregation step and aims to minimize the sum of chi-squared errors in frequency tables.
Finally, an experimental study comparing the methods covered or developed in this work shows particularly strong results for the proposed method with respect to relative criteria, while SAFE shows its strength with respect to the maximum absolute error in frequency tables. We conclude that the inclusion of integer programming in the context of data anonymization is a promising direction to reduce the inevitable information loss inherent in anonymization, particularly for nominal data.