Refine
Keywords
- Datenerhebung (1)
- Methode (1)
- Nicht-linear Statistiken (1)
- Stichprobenentnahme (1)
- Stichprobenkoordination (1)
- Varianzschätzung (1)
- Veränderung von Querschnitten (1)
- Zeitreihenanalyse (1)
- calibration (1)
- data quality (1)
Institute
- Wirtschaftswissenschaften (2) (remove)
Mittels Querschnittserhebungen ist es möglich Populationsparameter zu einem bestimmten Zeitpunkt zu schätzen. Jedoch ist meist die Veränderung von Populationsparametern von besonderem Interesse. So ist es zur Evaluation von politischen Zielvorgaben erforderlich die Veränderung von Indikatoren, wie Armutsmaßen, über die Zeit zu verfolgen. Um zu testen ob eine gemessene Veränderung sich signifikant von Null unterscheidet bedarf es einer Varianzschätzung für Veränderungen von Querschnitten. In diesem Zusammenhang ergeben sich oft zwei Probleme; Zum einen sind die relevanten Statistiken meist nicht-linear und zum anderen basieren die untersuchten Querschnittserhebungen auf Stichproben die nicht unabhängig voneinander gezogen wurden. Ziel der vorliegenden Dissertation ist es einen theoretischen Rahmen zur Herleitung und Schätzung der Varianz einer geschätzten Veränderung von nicht-linearen Statistiken zu geben. Hierzu werden die Eigenschaften von Stichprobendesigns erarbeitetet, die zur Koordination von Stichprobenziehungen in einer zeitlichen Abfolge verwendet werden. Insbesondere werden Ziehungsalgorithmen zur Koordination von Stichproben vorgestellt, erarbeitet und deren Eigenschaften beschrieben. Die Problematik der Varianzschätzung im Querschnitt für nicht-lineare Schätzer bei komplexen Stichprobendesigns wird ebenfalls behandelt. Schließlich wird ein allgemeiner Ansatz zur Schätzung von Veränderungen aufgezeigt und es werden Varianzschätzer für die Veränderung von Querschnittschätzern basierend auf koordinierten Querschnittstichproben untersucht. Insbesondere dem Fall einer sich über die Zeit verändernden Population wird eine besondere Bedeutung im Rahmen der Arbeit beigemessen, da diese im Anwendungsfall die Regel darstellen.
Non-probability sampling is a topic of growing relevance, especially due to its occurrence in the context of new emerging data sources like web surveys and Big Data.
This thesis addresses statistical challenges arising from non-probability samples, where unknown or uncontrolled sampling mechanisms raise concerns in terms of data quality and representativity.
Various methods to quantify and reduce the potential selectivity and biases of non-probability samples in estimation and inference are discussed. The thesis introduces new forms of prediction and weighting methods, namely
a) semi-parametric artificial neural networks (ANNs) that integrate B-spline layers with optimal knot positioning in the general structure and fitting procedure of artificial neural networks, and
b) calibrated semi-parametric ANNs that determine weights for non-probability samples by integrating an ANN as response model with calibration constraints for totals, covariances and correlations.
Custom-made computational implementations are developed for fitting (calibrated) semi-parametric ANNs by means of stochastic gradient descent, BFGS and sequential quadratic programming algorithms.
The performance of all the discussed methods is evaluated and compared for a bandwidth of non-probability sampling scenarios in a Monte Carlo simulation study as well as an application to a real non-probability sample, the WageIndicator web survey.
Potentials and limitations of the different methods for dealing with the challenges of non-probability sampling under various circumstances are highlighted. It is shown that the best strategy for using non-probability samples heavily depends on the particular selection mechanism, research interest and available auxiliary information.
Nevertheless, the findings show that existing as well as newly proposed methods can be used to ease or even fully counterbalance the issues of non-probability samples and highlight the conditions under which this is possible.