Refine
Keywords
- prescribed approximation curves (2) (remove)
In dieser Dissertation beschäftigen wir uns mit der konstruktiven und generischen Gewinnung universeller Funktionen. Unter einer universellen Funktion verstehen wie dabei eine solche holomorphe Funktion, die in gewissem Sinne ganze Klassen von Funktionen enthält. Die konstruktive Methode beinhaltet die explizite Konstruktion einer universellen Funktion über einen Grenzprozess, etwa als Polynomreihe. Die generische Methode definiert zunächst rein abstrakt die jeweils gewünschte Klasse von universellen Funktionen. Mithilfe des Baireschen Dichtesatzes wird dann gezeigt, dass die Klasse dieser Funktionen nicht nur nichtleer, sondern sogar G_delta und dicht in dem betrachteten Funktionenraum ist. Beide Methoden bedienen sich der Approximationssätze von Runge und von Mergelyan. Die Hauptergebnisse sind die folgenden: (1) Wir haben konstruktiv die Existenz von universellen Laurentreihen auf mehrfach zusammenhängenden Gebieten bewiesen. Zusätzlich haben wir gezeigt, dass die Menge solcher universeller Laurentreihen dicht im Raum der auf dem betrachteten Gebiet holomorphen Funktionen ist. (2) Die Existenz von universellen Faberreihen auf gewissen Gebieten wurde sowohl konstruktiv als auch generisch bewiesen. (3) Zum einen haben wir konstruktiv gezeigt, dass es so genannte ganze T-universelle Funktionen mit vorgegebenen Approximationswegen gibt. Die Approximationswege sind durch eine hinreichend variable funktionale Form vorgegeben. Die Menge solcher Funktionen ist im Raum der ganzen Funktionen eine dichte G_delta-Menge. Zum anderen haben wir generisch die Existenz von auf einem beschränkten Gebiet T-universellen Funktionen bezüglich gewisser vorgegebener Approximationswege bewiesen. Die Approximationswege sind auch hier genügend allgemein.
In dieser Dissertation beschäftigen wir uns mit der konstruktiven und generischen Gewinnung universeller Funktionen. Unter einer universellen Funktion verstehen wie dabei eine solche holomorphe Funktion, die in gewissem Sinne ganze Klassen von Funktionen enthält. Die konstruktive Methode beinhaltet die explizite Konstruktion einer universellen Funktion über einen Grenzprozess, etwa als Polynomreihe. Die generische Methode definiert zunächst rein abstrakt die jeweils gewünschte Klasse von universellen Funktionen. Mithilfe des Baireschen Dichtesatzes wird dann gezeigt, dass die Klasse dieser Funktionen nicht nur nichtleer, sondern sogar G_delta und dicht in dem betrachteten Funktionenraum ist. Beide Methoden bedienen sich der Approximationssätze von Runge und von Mergelyan. Die Hauptergebnisse sind die folgenden: (1) Wir haben konstruktiv die Existenz von universellen Laurentreihen auf mehrfach zusammenhängenden Gebieten bewiesen. Zusätzlich haben wir gezeigt, dass die Menge solcher universeller Laurentreihen dicht im Raum der auf dem betrachteten Gebiet holomorphen Funktionen ist. (2) Die Existenz von universellen Faberreihen auf gewissen Gebieten wurde sowohl konstruktiv als auch generisch bewiesen. (3) Zum einen haben wir konstruktiv gezeigt, dass es so genannte ganze T-universelle Funktionen mit vorgegebenen Approximationswegen gibt. Die Approximationswege sind durch eine hinreichend variable funktionale Form vorgegeben. Die Menge solcher Funktionen ist im Raum der ganzen Funktionen eine dichte G_delta-Menge. Zum anderen haben wir generisch die Existenz von auf einem beschränkten Gebiet T-universellen Funktionen bezüglich gewisser vorgegebener Approximationswege bewiesen. Die Approximationswege sind auch hier genügend allgemein.