49Q10 Optimization of shapes other than minimal surfaces [See also 90C90]
Refine
Keywords
- Formenräume (1) (remove)
Shape optimization is of interest in many fields of application. In particular, shape optimization problems arise frequently in technological processes which are modelled by partial differential equations (PDEs). In a lot of practical circumstances, the shape under investigation is parametrized by a finite number of parameters, which, on the one hand, allows the application of standard optimization approaches, but, on the other hand, unnecessarily limits the space of reachable shapes. Shape calculus presents a way to circumvent this dilemma. However, so far shape optimization based on shape calculus is mainly performed using gradient descent methods. One reason for this is the lack of symmetry of second order shape derivatives or shape Hessians. A major difference between shape optimization and the standard PDE constrained optimization framework is the lack of a linear space structure on shape spaces. If one cannot use a linear space structure, then the next best structure is a Riemannian manifold structure, in which one works with Riemannian shape Hessians. They possess the often sought property of symmetry, characterize well-posedness of optimization problems and define sufficient optimality conditions. In general, shape Hessians are used to accelerate gradient-based shape optimization methods. This thesis deals with shape optimization problems constrained by PDEs and embeds these problems in the framework of optimization on Riemannian manifolds to provide efficient techniques for PDE constrained shape optimization problems on shape spaces. A Lagrange-Newton and a quasi-Newton technique in shape spaces for PDE constrained shape optimization problems are formulated. These techniques are based on the Hadamard-form of shape derivatives, i.e., on the form of integrals over the surface of the shape under investigation. It is often a very tedious, not to say painful, process to derive such surface expressions. Along the way, volume formulations in the form of integrals over the entire domain appear as an intermediate step. This thesis couples volume integral formulations of shape derivatives with optimization strategies on shape spaces in order to establish efficient shape algorithms reducing analytical effort and programming work. In this context, a novel shape space is proposed.