Although universality has fascinated over the last decades, there are still numerous open questions in this field that require further investigation. In this work, we will mainly focus on classes of functions whose Fourier series are universal in the sense that they allow us to approximate uniformly any continuous function defined on a suitable subset of the unit circle.
The structure of this thesis is as follows. In the first chapter, we will initially introduce the most important notation which is needed for our following discussion. Subsequently, after recalling the notion of universality in a general context, we will revisit significant results concerning universality of Taylor series. The focus here is particularly on universality with respect to uniform convergence and convergence in measure. By a result of Menshov, we will transition to universality of Fourier series which is the central object of study in this work.
In the second chapter, we recall spaces of holomorphic functions which are characterized by the growth of their coefficients. In this context, we will derive a relationship to functions on the unit circle via an application of the Fourier transform.
In the second part of the chapter, our attention is devoted to the $\mathcal{D}_{\textup{harm}}^p$ spaces which can be viewed as the set of harmonic functions contained in the $W^{1,p}(\D)$ Sobolev spaces. In this context, we will also recall the Bergman projection. Thanks to the intensive study of the latter in relation to Sobolev spaces, we can derive a decomposition of $\mathcal{D}_{\textup{harm}}^p$ spaces which may be seen as analogous to the Riesz projection for $L^p$ spaces. Owing to this result, we are able to provide a link between $\mathcal{D}_{\textup{harm}}^p$ spaces and spaces of holomorphic functions on $\mathbb{C}_\infty \setminus \s$ which turns out to be a crucial step in determining the dual of $\mathcal{D}_{\textup{harm}}^p$ spaces.
The last section of this chapter deals with the Cauchy dual which has a close connection to the Fantappié transform. As an application, we will determine the Cauchy dual of the spaces $D_\alpha$ and $D_{\textup{harm}}^p$, two results that will prove to be very helpful later on. Finally, we will provide a useful criterion that establishes a connection between the density of a set in the direct sum $X \oplus Y$ and the Cauchy dual of the intersection of the respective spaces.
The subsequent chapter will delve into the theory of capacities and, consequently, potential theory which will prove to be essential in formulating our universality results. In addition to introducing further necessary terminologies, we will define capacities in the first section following [16], however in the frame of separable metric spaces, and revisit the most important results about them.
Simultaneously, we make preparations that allow us to define the $\mathrm{Li}_\alpha$-capacity which will turn out to be equivalent to the classical Riesz $\alpha$-capacity. The $\mathrm{Li}_\alpha$-capacity proves to be more adapted to the $D_\alpha$ spaces. It becomes apparent in the course of our discussion that the $\mathrm{Li}_\alpha$-capacity is essential to prove uniqueness results for the class $D_\alpha$. This leads to the centerpiece of this chapter which forms the energy formula for the $\mathrm{Li}_\alpha$-capacity on the unit circle. More precisely, this identity establishes a connection between the energy of a measure and its corresponding Fourier coefficients. We will briefly deal with the complement-equivalence of capacities before we revisit the concept of Bessel and Riesz capacities, this time, however, in a much more general context, where we will mainly rely on [1]. Since we defined capacities on separable metric spaces in the first section, we can draw a connection between Bessel capacities and $\mathrm{Li}_\alpha$-capacities. To conclude this chapter, we would like to take a closer look at the geometric meaning of capacities. Here, we will point out a connection between the Hausdorff dimension and the polarity of a set, and transfer it to the $\mathrm{Li}_\alpha$-capacity. Another aspect will be the comparison of Bessel capacities across different dimensions, in which the theory of Wolff potentials crystallizes as a crucial auxiliary tool.
In the fourth chapter of this thesis, we will turn our focus to the theory of sets of uniqueness, a subject within the broader field of harmonic analysis. This theory has a close relationship with sets of universality, a connection that will be further elucidated in the upcoming chapter.
The initial section of this chapter will be dedicated to the notion of sets of uniqueness that is specifically adapted to our current context. Building on this concept, we will recall some of the fundamental results of this theory.
In the subsequent section, we will primarily rely on techniques from previous chapters to determine the closed sets of uniqueness for the class $\mathcal{D}_{\alpha}$. The proofs we will discuss are largely influenced by [16, p.\ 178] and [9, pp.\ 82].
One more time, it will become evident that the introduction of the $\mathrm{Li}_\alpha$-capacity in the third chapter and the closely associated energy formula on the unit circle, were the pivotal factors that enabled us to carry out these proofs.
In the final chapter of our discourse, we will present our results on universality. To begin, we will recall a version of the universality criterion which traces back to the work of Grosse-Erdmann (see [26]). Coupled with an outcome from the second chapter, we will prove a result that allows us to obtain the universality of a class using the technique of simultaneous approximation. This tool will play a key role in the proof of our universality results which will follow hereafter.
Our attention will first be directed toward the class $D_\alpha$ with $\alpha$ in the interval $(0,1]$. Here, we summarize that universality with respect to uniform convergence occurs on closed and $\alpha$-polar sets $E \subset \s$. Thanks to results of Carleson and further considerations, which particularly rely on the favorable behavior of the $\mathrm{Li}_\alpha$-kernel, we also find that this result is sharp. In particular, it may be seen as a generalization of the universality result for the harmonic Dirichlet space.
Following this, we will investigate the same class, however, this time for $\alpha \in [-1,0)$. In this case, it turns out that universality with respect to uniform convergence occurs on closed and $(-\alpha)$-complement-polar sets $E \subset \s$. In particular, these sets of universality can have positive arc measure. In the final section, we will focus on the class $D_{\textup{harm}}^p$. Here, we manage to prove that universality occurs on closed and $(1,p)$-polar sets $E \subset \s$. Through results of Twomey [68] combined with an observation by Girela and Pélaez [23], as well as the decomposition of $D_{\textup{harm}}^p$, we can deduce that the closed sets of universality with respect to uniform convergence of the class $D_{\textup{harm}}^p$ are characterized by $(1,p)$-polarity. We conclude our work with an application of the latter result to the class $D^p$. We will show that the closed sets of divergence for the class $D^p$ are given by the $(1,p)$-polar sets.