Fachbereich 4
Refine
Document Type
- Doctoral Thesis (68)
- Article (2)
- Habilitation (1)
- Master's Thesis (1)
Keywords
- Optimierung (8)
- Deutschland (4)
- Finanzierung (4)
- Schätzung (4)
- Stichprobe (4)
- Unternehmen (4)
- Erhebungsverfahren (3)
- Familienbetrieb (3)
- Gestaltoptimierung (3)
- Maschinelles Lernen (3)
Case-Based Reasoning (CBR) is a symbolic Artificial Intelligence (AI) approach that has been successfully applied across various domains, including medical diagnosis, product configuration, and customer support, to solve problems based on experiential knowledge and analogy. A key aspect of CBR is its problem-solving procedure, where new solutions are created by referencing similar experiences, which makes CBR explainable and effective even with small amounts of data. However, one of the most significant challenges in CBR lies in defining and computing meaningful similarities between new and past problems, which heavily relies on domain-specific knowledge. This knowledge, typically only available through human experts, must be manually acquired, leading to what is commonly known as the knowledge-acquisition bottleneck.
One way to mitigate the knowledge-acquisition bottleneck is through a hybrid approach that combines the symbolic reasoning strengths of CBR with the learning capabilities of Deep Learning (DL), a sub-symbolic AI method. DL, which utilizes deep neural networks, has gained immense popularity due to its ability to automatically learn from raw data to solve complex AI problems such as object detection, question answering, and machine translation. While DL minimizes manual knowledge acquisition by automatically training models from data, it comes with its own limitations, such as requiring large datasets, and being difficult to explain, often functioning as a "black box". By bringing together the symbolic nature of CBR and the data-driven learning abilities of DL, a neuro-symbolic, hybrid AI approach can potentially overcome the limitations of both methods, resulting in systems that are both explainable and capable of learning from data.
The focus of this thesis is on integrating DL into the core task of similarity assessment within CBR, specifically in the domain of process management. Processes are fundamental to numerous industries and sectors, with process management techniques, particularly Business Process Management (BPM), being widely applied to optimize organizational workflows. Process-Oriented Case-Based Reasoning (POCBR) extends traditional CBR to handle procedural data, enabling applications such as adaptive manufacturing, where past processes are analyzed to find alternative solutions when problems arise. However, applying CBR to process management introduces additional complexity, as procedural cases are typically represented as semantically annotated graphs, increasing the knowledge-acquisition effort for both case modeling and similarity assessment.
The key contributions of this thesis are as follows: It presents a method for preparing procedural cases, represented as semantic graphs, to be used as input for neural networks. Handling such complex, structured data represents a significant challenge, particularly given the scarcity of available process data in most organizations. To overcome the issue of data scarcity, the thesis proposes data augmentation techniques to artificially expand the process datasets, enabling more effective training of DL models. Moreover, it explores several deep learning architectures and training setups for learning similarity measures between procedural cases in POCBR applications. This includes the use of experience-based Hyperparameter Optimization (HPO) methods to fine-tune the deep learning models.
Additionally, the thesis addresses the computational challenges posed by graph-based similarity assessments in CBR. The traditional method of determining similarity through subgraph isomorphism checks, which compare nodes and edges across graphs, is computationally expensive. To alleviate this issue, the hybrid approach seeks to use DL models to approximate these similarity calculations more efficiently, thus reducing the computational complexity involved in graph matching.
The experimental evaluations of the corresponding contributions provide consistent results that indicate the benefits of using DL-based similarity measures and case retrieval methods in POCBR applications. The comparison with existing methods, e.g., based on subgraph isomorphism, shows several advantages but also some disadvantages of the compared methods. In summary, the methods and contributions outlined in this work enable more efficient and robust applications of hybrid CBR and DL in process management applications.
The gender wage gap in labor market outcomes has been intensively investigated for decades, yet it remains a relevant and innovative research topic in labor economics. Chapter 2 of this dissertation explores the pressing issue of gender wage disparity in Ethiopia. By applying various empirical methodologies and measures of occupational segregation, this chapter aims to analyze the role of female occupational segregation in explaining the gender wage gap across the pay distribution. The findings reveal a significant difference in monthly wages, with women consistently earning lower wages across the wage distribution.
Importantly, the result indicates a negative association between female occupational segregation and the average earnings of both men and women. Furthermore, the estimation result shows that female occupational segregation partially explains the gender wage gap at the bottom of the wage distribution. I find that the magnitude of the gender wage gap in the private sector is higher than in the public sector.
In Chapter 3, the Ethiopian Demography and Health Survey data are leveraged to explore the causal relationship between female labor force participation and domestic violence. Domestic violence against women is a pervasive public health concern, particularly in Africa, including Ethiopia, where a significant proportion of women endure various forms of domestic violence perpetrated by intimate partners. Economic empowerment of women through increased participation in the labor market can be one of the mechanisms for mitigating the risk of domestic violence.
This study seeks to provide empirical evidence supporting this hypothesis. Using the employment rate of women at the community level as an instrumental variable, the finding suggests that employment significantly reduces the risk of domestic violence against women. More precisely, the result shows that women’s employment status significantly reduces domestic violence by about 15 percentage points. This finding is robust for different dimensions of domestic violence, such as physical, sexual, and emotional violence.
By examining the employment outcomes of immigrants in the labor market, Chapter 4 extends the dissertation's inquiry to the dynamics of immigrant economic integration into the destination country. Drawing on data from the German Socio-Economic Panel, the chapter scrutinizes the employment gap between native-born individuals and two distinct groups of first-generation immigrants: refugees and other migrants. Through rigorous analysis, Chapter 4 aims to identify the factors contributing to disparities in employment outcomes among these groups. In this chapter, I aim to disentangle the heterogeneity characteristic of refugees and other immigrants in the labor market, thereby contributing to a deeper understanding of immigrant labor market integration in Germany.
The results show that refugees and other migrants are less likely to find employment than comparable natives. The refugee-native employment gap is much wider than other migrant-native employment gap. Moreover, the findings vary by gender and migration categories. While other migrant men do not differ from native men in the probability of being employed, refugee women are the most disadvantaged group compared to other migrant women and native women in the probability of being employed. The study suggests that German language proficiency and permanent resident permits partially explain the lower employment probability of refugees in the German labor market.
Chapter 5 (co-authored with Uwe Jirjahn) utilizes the same dataset to explore the immigrant-native trade union membership gap, focusing on the role of integration in the workplace and into society. The integration of immigrants into society and the workplace is vital not only to improve migrant's performance in the labor market but also to actively participate in institutions such as trade unions. In this study, we argue that the incomplete integration of immigrants into the workplace and society implies that immigrants are less likely to be union members than natives. Our findings show that first-generation immigrants are less likely to be trade union members than natives. Notably, the analysis shows that the immigrant-native gap in union membership depends on immigrants’ integration into the workplace and society. The gap is smaller for immigrants working in firms with a works council and having social contacts with Germans. Moreover, the results reveal that the immigrant-native union membership gap is decreasing in the year since arrival in Germany.
Rechts und radikal liberal
(2022)
Die Masterarbeit untersucht den Zusammenhang zwischen Libertarismus und Rechtsextremismus, wobei der Fokus auf der Entwicklung der libertären Szene in Deutschland liegt. Zunächst wird ein ausführlicher theoretischer Teil präsentiert, in dem gezeigt wird, dass zwischen einer radikal wirtschaftsliberalen und einer rechtsextremen Weltauffassung partiell gemeinsame Elemente bestehen. Insbesondere werden ein spezifischer Antiegalitarismus, eine Naturalisierung gesellschaftlicher Sachverhalte sowie eine gemeinsame Feindbildkonstruktion als verbindende Merkmale identifiziert, die beide Ideologien, die auf Ungleichwertigkeitsvorstellungen basieren, prägen. Im Anschluss folgt eine empirische Analyse des libertären Magazins eigentümlich frei, das eine zentrale Rolle in der deutschsprachigen libertären Bewegung spielt. Der soziologische Neo-Institutionalismus dient als theoretische Perspektive, um den institutionellen Wandel innerhalb der libertären Szene zu erfassen und zu analysieren. Die empirische Untersuchung bestätigt die theoretischen Annahmen und zeigt, dass sich im libertären Diskurs eine zunehmende Annäherung an rechtsextreme Ideologien vollzieht. Fünf Phasen des institutionellen Wandels werden identifiziert, die mit einer verstärkten Vernetzung der libertären Bewegung mit dem rechtsextremen Spektrum und der Veränderung von Diskursen einhergehen. Die Arbeit kommt zu dem Schluss, dass die libertäre Szene um eigentlich frei dem rechtsextremen Spektrum zuzuordnen ist. Die Untersuchung schlägt vor, den Libertarismus im Rahmen dieser Entwicklung als „Paläolibertarismus“ zu bezeichnen, was auf eine ideologische Nähe zur Alt-Right-Bewegung hinweist. Zentrale Merkmale dieser Ideologie sind neben einer radikal wirtschaftsliberalen Ausrichtung auch die Forderung nach einer Privatisierung gesellschaftlicher Institutionen und die Etablierung von sozialen Autoritäten wie Familie und Kirche zum Schutz des Individuums vor staatlicher Einflussnahme.
Convex Duality in Consumption-Portfolio Choice Problems with Epstein-Zin Recursive Preferences
(2025)
This thesis deals with consumption-investment allocation problems with Epstein-Zin recursive utility, building upon the dualization procedure introduced by [Matoussi and Xing, 2018]. While their work exclusively focuses on truly recursive utility, we extend their procedure to include time-additive utility using results from general convex analysis. The dual problem is expressed in terms of a backward stochastic differential equation (BSDE), for which existence and uniqueness results are established. In this regard, we close a gap left open in previous works, by extending results restricted to specific subsets of parameters to cover all parameter constellations within our duality setting.
Using duality theory, we analyze the utility loss of an investor with recursive preferences, that is, her difference in utility between acting suboptimally in a given market, compared to her best possible (optimal) consumption-investment behaviour. In particular, we derive universal power utility bounds, presenting a novel and tractable approximation of the investors’ optimal utility and her welfare loss associated to specific investment-consumption choices. To address quantitative shortcomings of those power utility bounds, we additionally introduce one-sided variational bounds that offer a more effective approximation for recursive utilities. The theoretical value of our power utility bounds is demonstrated through their application in a new existence and uniqueness result for the BSDE characterizing the dual problem.
Moreover, we propose two approximation approaches for consumption-investment optimization problems with Epstein-Zin recursive preferences. The first approach directly formalizes the classical concept of least favorable completion, providing an analytic approximation fully characterized by a system of ordinary differential equations. In the special case of power utility, this approach can be interpreted as a variation of the well-known Campbell-Shiller approximation, improving some of its qualitative shortcomings with respect to state dependence of the resulting approximate strategies. The second approach introduces a PDE-iteration scheme, by reinterpreting artificial completion as a dynamic game, where the investor and a dual opponent interact until reaching an equilibrium that corresponds to an approximate solution of the investors optimization problem. Despite the need for additional approximations within each iteration, this scheme is shown to be quantitatively and qualitatively accurate. Moreover, it is capable of approximating high dimensional optimization problems, essentially avoiding the curse of dimensionality and providing analytical results.
This dissertation examines the relevance of regimes for stock markets. In three research articles, we cover the identification and predictability of regimes and their relationships to macroeconomic and financial variables in the United States.
The initial two chapters contribute to the debate on the predictability of stock markets. While various approaches can demonstrate in-sample predictability, their predictive power diminishes substantially in out-of-sample studies. Parameter instability and model uncertainty are the primary challenges. However, certain methods have demonstrated efficacy in addressing these issues. In Chapter 1 and 2, we present frameworks that combine these methods meaningfully. Chapter 3 focuses on the role of regimes in explaining macro-financial relationships and examines the state-dependent effects of macroeconomic expectations on cross-sectional stock returns. Although it is common to capture the variation in stock returns using factor models, their macroeconomic risk sources are unclear. According to macro-financial asset pricing, expectations about state variables may be viable candidates to explain these sources. We examine their usefulness in explaining factor premia and assess their suitability for pricing stock portfolios.
In summary, this dissertation improves our understanding of stock market regimes in three ways. First, we show that it is worthwhile to exploit the regime dependence of stock markets. Markov-switching models and their extensions are valuable tools for filtering the stock market dynamics and identifying and predicting regimes in real-time. Moreover, accounting for regime-dependent relationships helps to examine the dynamic impact of macroeconomic shocks on stock returns. Second, we emphasize the usefulness of macro-financial variables for the stock market. Regime identification and forecasting benefit from their inclusion. This is particularly true in periods of high uncertainty when information processing in financial markets is less efficient. Finally, we recommend to address parameter instability, estimation risk, and model uncertainty in empirical models. Because it is difficult to find a single approach that meets all of these challenges simultaneously, it is advisable to combine appropriate methods in a meaningful way. The framework should be as complex as necessary but as parsimonious as possible to mitigate additional estimation risk. This is especially recommended when working with financial market data with a typically low signal-to-noise ratio.
Mixed-Integer Optimization Techniques for Robust Bilevel Problems with Here-and-Now Followers
(2025)
In bilevel optimization, some of the variables of an optimization problem have to be an optimal solution to another nested optimization problem. This specific structure renders bilevel optimization a powerful tool for modeling hierarchical decision-making processes, which arise in various real-world applications such as in critical infrastructure defense, transportation, or energy. Due to their nested structure, however, bilevel problems are also inherently hard to solve—both in theory and in practice. Further challenges arise if, e.g., bilevel problems under uncertainty are considered.
In this dissertation, we address different types of uncertainties in bilevel optimization using techniques from robust optimization. We study mixed-integer linear bilevel problems with lower-level objective uncertainty, which we tackle using the notion of Gamma-robustness. We present two exact branch-and-cut approaches to solve these Gamma-robust bilevel problems, along with cuts tailored to the important class of monotone interdiction problems. Given the overall hardness of the considered problems, we additionally propose heuristic approaches for mixed-integer, linear, and Gamma-robust bilevel problems. The latter rely on solving a linear number of deterministic bilevel problems so that no problem-specific tailoring is required. We assess the performance of both the exact and the heuristic approaches through extensive computational studies.
In addition, we study the problem of determining optimal tolls in a traffic network in which the network users hedge against uncertain travel costs in a robust way. The overall toll-setting problem can be seen as a single-leader multi-follower problem with multiple robustified followers. We model this setting as a mathematical problem with equilibrium constraints, for which we present a mixed-integer, nonlinear, and nonconvex reformulation that can be tackled using state-of-the-art general-purpose solvers. We further illustrate the impact of considering robustified followers on the toll-setting policies through a case study.
Finally, we highlight that the sources of uncertainty in bilevel optimization are much richer compared to single-level optimization. To this end, we study two aspects related to so-called decision uncertainty. First, we propose a strictly robust approach in which the follower hedges against erroneous observations of the leader's decision. Second, we consider an exemplary bilevel problem with a continuous but nonconvex lower level in which algorithmic necessities prevent the follower from making a globally optimal decision in an exact sense. The example illustrates that even very small deviations in the follower's decision may lead to arbitrarily large discrepancies between exact and computationally obtained bilevel solutions.
Partial differential equations are not always suited to model all physical phenomena, especially, if long-range interactions are involved or if the actual solution might not satisfy the regularity requirements associated with the partial differential equation. One remedy to this problem are nonlocal operators, which typically consist of integrals that incorporate interactions between two separated points in space and the corresponding solutions to nonlocal equations have to satisfy less regularity conditions.
In PDE-constrained shape optimization the goal is to minimize or maximize an objective functional that is dependent on the shape of a certain domain and on the solution to a partial differential equation, which is usually also influenced by the shape of this domain. Moreover, parameters associated with the nonlocal model are oftentimes domain dependent and thus it is a natural next step to now consider shape optimization problems that are governed by nonlocal equations.
Therefore, an interface identification problem constrained by nonlocal equations is thoroughly investigated in this thesis. Here, we focus on rigorously developing the first and second shape derivative of the associated reduced functional. In addition, we study first- and second-order shape optimization algorithms in multiple numerical experiments.
Moreover, we also propose Schwarz methods for nonlocal Dirichlet problems as well as regularized nonlocal Neumann problems. Particularly, we investigate the convergence of the multiplicative Schwarz approach and we conduct a number of numerical experiments, which illustrate various aspects of the Schwarz method applied to nonlocal equations.
Since applying the finite element method to solve nonlocal problems numerically can be quite costly, Local-to-Nonlocal couplings emerged, which combine the accuracy of nonlocal models on one part of the domain with the fast computation of partial differential equations on the remaining area. Therefore, we also examine the interface identification problem governed by an energy-based Local-to-Nonlocal coupling, which can be numerically computed by making use of the Schwarz method. Here, we again present a formula for the shape derivative of the associated reduced functional and investigate a gradient based shape optimization method.
In machine learning, classification is the task of predicting a label for each point within a data set. When the class of each point in the labeled subset is already known, this information is used to recognize patterns and make predictions about the points in the remainder of the set, referred to as the unlabeled set. This scenario falls in the field of supervised learning.
However, the number of labeled points can be restricted, because, e.g., it is expensive to obtain this information. Besides, this subset may be biased, such as in the case of self-selection in a survey. Consequently, the classification performance for unlabeled points may be limited. To improve the reliability of the results, semi-supervised learning tackles the setting of labeled and unlabeled data. Moreover, in many cases, additional information about the size of each class can be available from undisclosed sources.
This cumulative thesis presents different studies to combine this external cardinality constraint information within three important algorithms for binary classification in the supervised context: support vector machines (SVM), classification trees, and random forests. From a mathematical point of view, we focus on mixed-integer programming (MIP) models for semi-supervised approaches that consider a cardinality constraint for each class for each algorithm.
Furthermore, since the proposed MIP models are computationally challenging, we also present techniques that simplify the process of solving these problems. In the SVM setting, we introduce a re-clustering method and further computational techniques to reduce the computational cost. In the context of classification trees, we provide correct values for certain bounds that play a crucial role for the solver performance. For the random forest model, we develop preprocessing techniques and an intuitive branching rule to reduce the solution time. For all three methods, our numerical results show that our approaches have better statistical performances for biased samples than the standard approach.
Optimal Error Bounds in Normal and Edgeworth Approximation of Symmetric Binomial and Related Laws
(2024)
This thesis explores local and global normal and Edgeworth approximations for symmetric
binomial distributions. Further, it examines the normal approximation of convolution powers
of continuous and discrete uniform distributions.
We obtain the optimal constant in the local central limit theorem for symmetric binomial
distributions and its analogs in higher-order Edgeworth approximation. Further, we offer a
novel proof for the known optimal constant in the global central limit theorem for symmetric
binomial distributions using Fourier inversion. We also consider the effect of simple continuity
correction in the global central limit theorem for symmetric binomial distributions. Here, and in
higher-order Edgeworth approximation, we found optimal constants and asymptotically sharp
bounds on the approximation error. Furthermore, we prove asymptotically sharp bounds on the
error in the local case of a relative normal approximation to symmetric binomial distributions.
Additionally, we provide asymptotically sharp bounds on the approximation error in the local
central limit theorem for convolution powers of continuous and discrete uniform distributions.
Our methods include Fourier inversion formulae, explicit inequalities, and Edgeworth expansions, some of which may be of independent interest.
This thesis consists of four highly related chapters examining China’s rise in the aluminium industry. The first chapter addresses the conditions that allowed China, which first entered the market in the 1950s, to rise to world leadership in aluminium production. Although China was a latecomer, its re-entry into the market after the oil crises in the 1970s was a success and led to its ascent as the world’s largest aluminium producer by 2001. With an estimated production of 40.4 million tonnes in 2022, China represented almost 60% of the global output. Chapter 1 examines the factors underlying this success, such as the decline of international aluminium cartels, the introduction of innovative technology, the US granting China the MFN tariff status, Chinese-specific factors, and supportive government policies. Chapter 2 develops a mathematical model to analyze firms’ decisions in the short term. It examines how an incumbent with outdated technology and a new entrant with access to a new type of technology make strategic decisions, including the incumbent’s decision whether to deter entry, the production choice of firms, the optimal technology adoption rate of the newcomer, and cartel formation. Chapter 3 focuses on the adoption of new technology by firms upon market entry in four scenarios: firstly, a free market Cournot competition; secondly, a situation in which the government determines technology adoption rates; thirdly, a scenario in which the government controls both technology and production; and finally, a scenario where the government dictates technology adoption rates, production levels, and also the number of market participants. Chapter 4 applies the Spencer and Brander (1983) framework to examine strategic industrial policy. The model assumes that there are two exporting firms in two different countries that sell a product to a third country. We examine how the domestic firm is influenced by government intervention, such as the provision of a fixed-cost subsidy to improve its competitiveness relative to the foreign company. Chapter 4 initially investigates a scenario where only one government offers a fixed-cost subsidy, followed by an analysis of the case when both governments simultaneously provide financial help. Taken together, these chapters provide a comprehensive analysis of the strategic, technological, and political factors contributing to China’s leadership in the global aluminium industry.
Chapter 1: The Rise of China as a Latecomer in the Global Aluminium Industry
This chapter examines China’s remarkable transformation into a global leader in the aluminium industry, a sector in which the country accounted for approximately 58.9% of worldwide production in 2022. We examine how China, a latecomer to the aluminium industry that started off with labor-intensive technology in 1953, grew into the largest aluminium producer with some of the most advanced smelters in the world. This analysis identifies and discusses several opportunities that Chinese aluminium producers took advantage of. The first set of opportunities happened during the 1970s oil crises, which softened international competition and allowed China to acquire innovative smelting technology from Japan. The second set of opportunities started at about the same time when China opened its economy in 1978. The substantial demand for aluminium in China is influenced by both external and internal factors. Externally, the US granted China’s MFN tariff status in 1980 and China entered the World Trade Organization (WTO) in 2001. Both events contributed to a surge in Chinese aluminium consumption. Internally, China’s investment-led growth model boosted further its aluminium demand. Additional factors specific to China, such as low labor costs and the abundance of coal as an energy source, offer Chinese firms competitive advantages against international players. Furthermore, another window of opportunity is due to Chinese governmental policies, including phasing out old technology, providing subsidies, and gradually opening the economy to enhance domestic competition before expanding globally. By describing these elements, the study provides insights into the dynamic interplay of external circumstances and internal strategies that contributed to the success of the Chinese aluminium industry.
Chapter 2: Technological Change and Strategic Choices for Incumbent and New Entrant
This chapter introduces an oligopoly model that includes two actors: an incumbent and a potential entrant, that compete in the same market. We assume that two participants are located in different parts of the market: the incumbent is situated in area 1, whereas the potential entrant may venture into the other region, area 2. The incumbent exists in stage zero, where it can decide whether to deter the newcomer’s entry. A new type of technology exists in period one, when the newcomer may enter the market. In the short term, the incumbent is trapped with the outdated technology, while the new entrant may choose to partially or completely adopt the latest technology. Our results suggest the following: Firstly, the incumbent only tries to deter the new entrant if a condition for entry cost is met. Secondly, the new entrant is only interested in forming a cartel with the incumbent if a function of the ratio of the variable to new technology’s fixed-cost parameters is sufficiently high. Thirdly, if the newcomer asks to form a cartel, the incumbent will always accept this request. Finally, we can obtain the optimal new technology adoption rate for the newcomer.
Chapter 3: Technological Adoption and Welfare in Cournot Oligopoly
This study examines the difference between the optimal technology adoption rates chosen by firms in a homogeneous Cournot oligopoly and that preferred by a benevolent government upon firms’ market entry. To address the question of whether the technology choices of firms and government are similar, we analyze several different scenarios, which differ in the extent of government intervention in the market. Our results suggest a relationship between the number of firms in the market and the impact of government intervention on technology adoption rates. Especially in situations with a low number of firms that are interested in entering the market, greater government influence tends to lead to higher technology adoption rates of firms. Conversely, in scenarios with a higher number of firms and a government that lacks control over the number of market players, the technology adoption rate of firms will be highest when the government plays no role.
Chapter 4: International Technological Innovation and Industrial Strategies
Supporting domestic firms when they first enter the market may be seen as a favorable policy choice by governments around the world thanks to their ability to enhance the competitive advantage of domestic firms in non-cooperative competition against foreign enterprises (infant industry protection argument). This advantage may allow domestic firms to increase their market share and generate higher profits, thereby improving domestic welfare. This chapter utilizes the Spencer and Brander (1983) framework as a theoretical foundation to elucidate the effects of fixed-cost subsidies on firms’ production levels, technological innovations, and social welfare. The analysis examines two firms in different countries, each producing a homogeneous product that is sold in a third, separate country. We first examine the Cournot-Nash equilibrium in the absence of government intervention, followed by analyzing a scenario where just one government provides a financial subsidy for its domestic firm, and finally, we consider a situation where both governments simultaneously provide financial assistance for their respective firms. Our results suggest that governments aim to maximize social welfare by providing fixed-cost subsidies to their respective firms, finding themselves in a Chicken game scenario. Regarding technology innovation, subsidies lead to an increased technological adoption rate for recipient firms, regardless of whether one or both firms in a market receive support, compared to the situation without subsidies. The technology adoption rate of the recipient firm is higher than of its rival when only the recipient firm benefits from the fixed-cost subsidy. The lowest technology adoption rate of a firm occurs when the firm does not receive a fixed-cost subsidy, but its competitor does. Furthermore, global welfare will benefit the most in case when both exporting countries grant fixed-cost subsidies, and this welfare level is higher when only one country subsidizes than when no subsidies are provided by any country.