150 Psychologie
Refine
Keywords
- Langzeitgedächtnis (4)
- Lernen (3)
- episodic memory (3)
- long-term memory (3)
- Arbeitsgedächtnis (2)
- Episodisches Gedächtnis (2)
- Information Retrieval (2)
- Learning (2)
- Long-term memory (2)
- Memory (2)
List-method directed forgetting (LMDF) is the demonstration that people can intentionally forget previously studied information when they are asked to forget what they have previously learned and remember new information instead. In addition, recent research demonstrated that people can selectively forget when cued to forget only a subset of the previously studied information. Both forms of forgetting are typically observed in recall tests, in which the to-be-forgotten and to-be-remembered information is tested independent of original cuing. Thereby, both LMDF and selective directed forgetting (SDF) have been studied mostly with unrelated item materials (e.g., word lists). The present study examined whether LMDF and SDF generalize to prose material. Participants learned three prose passages, which they were cued to remember or forget after the study of each passage. At the time of testing, participants were asked to recall the three prose passages regardless of original cuing. The results showed no significant differences in recall of the three lists as a function of cuing condition. The findings suggest that LMDF and SDF do not occur with prose material. Future research is needed to replicate and extend these findings with (other) complex and meaningful materials before drawing firm conclusions. If the null effect proves to be robust, this would have implications regarding the ecological validity and generalizability of current LMDF and SDF findings.
The forward testing effect is an indirect benefit of retrieval practice. It refers to the finding that retrieval practice of previously studied information enhances learning and retention of subsequently studied other information in episodic memory tasks. Here, two experiments were conducted that investigated whether retrieval practice influences participants’ performance in other tasks, i.e., arithmetic tasks. Participants studied three lists of words in anticipation of a final recall test. In the testing condition, participants were immediately tested on lists 1 and 2 after study of each list, whereas in the restudy condition, they restudied lists 1 and 2 after initial study. Before and after study of list 3, participants did an arithmetic task. Finally, participants were tested on list 3, list 2, and list 1. Different arithmetic tasks were used in the two experiments. Participants did a modular arithmetic task in Experiment 1a and a single-digit multiplication task in Experiment 1b. The results of both experiments showed a forward testing effect with interim testing of lists 1 and 2 enhancing list 3 recall in the list 3 recall test, but no effects of recall testing of lists 1 and 2 for participants’ performance in the arithmetic tasks. The findings are discussed with respect to cognitive load theory and current theories of the forward testing effect.
The forward testing effect refers to the finding that retrieval practice of previously studied information enhances learning and retention of subsequently studied other information. While most of the previous research on the forward testing effect examined group differences, the present study took an individual differences approach to investigate this effect. Experiment 1 examined whether the forward effect has test-retest reliability between two experimental sessions. Experiment 2 investigated whether the effect is related to participants’ working memory capacity. In both experiments (and each session of Experiment 1), participants studied three lists of items in anticipation of a final cumulative recall test. In the testing condition, participants were tested immediately on lists 1 and 2, whereas in the restudy condition, they restudied lists 1 and 2. In both conditions, participants were tested immediately on list 3. On the group level, the results of both experiments demonstrated a forward testing effect, with interim testing of lists 1 and 2 enhancing immediate recall of list 3. On the individual level, the results of Experiment 1 showed that the forward effect on list 3 recall has moderate test-retest reliability between two experimental sessions. In addition, the results of Experiment 2 showed that the forward effect on list 3 recall does not depend on participants’ working memory capacity. These findings suggest that the forward testing effect is reliable at the individual level and affects learners at a wide range of working memory capacities alike. The theoretical and practical implications of the findings are discussed.
The forward effect of testing refers to the finding that retrieval practice of previously studied information increases retention of subsequently studied other information. It has recently been hypothesized that the forward effect (partly) reflects the result of a reset-of-encoding (ROE) process. The proposal is that encoding efficacy decreases with an increase in study material, but testing of previously studied information resets the encoding process and makes the encoding of the subsequently studied information as effective as the encoding of the previously studied information. The goal of the present study was to verify the ROE hypothesis on an item level basis. An experiment is reported that examined the effects of testing in comparison to restudy on items’ serial position curves. Participants studied three lists of items in each condition. In the testing condition, participants were tested immediately on non-target lists 1 and 2, whereas in the restudy condition, they restudied lists 1 and 2. In both conditions, participants were tested immediately on target list 3. Influences of condition and items’ serial learning position on list 3 recall were analyzed. The results showed the forward effect of testing and furthermore that this effect varies with items’ serial list position. Early target list items at list primacy positions showed a larger enhancement effect than middle and late target list items at non-primacy positions. The results are consistent with the ROE hypothesis on an item level basis. The generalizability of the ROE hypothesis across different experimental tasks, like the list-method directed-forgetting task, is discussed.
Long-Term Memory Updating: The Reset-of-Encoding Hypothesis in List-Method Directed Forgetting
(2017)
People- memory for new information can be enhanced by cuing them to forget older information, as is shown in list-method directed forgetting (LMDF). In this task, people are cued to forget a previously studied list of items (list 1) and to learn a new list of items (list 2) instead. Such cuing typically enhances memory for the list 2 items and reduces memory for the list 1 items, which reflects effective long-term memory updating. This review focuses on the reset-of-encoding (ROE) hypothesis as a theoretical explanation of the list 2 enhancement effect in LMDF. The ROE hypothesis is based on the finding that encoding efficacy typically decreases with number of encoded items and assumes that providing a forget cue after study of some items (e.g., list 1) resets the encoding process and makes encoding of subsequent items (e.g., early list 2 items) as effective as encoding of previously studied (e.g., early list 1) items. The review provides an overview of current evidence for the ROE hypothesis. The evidence arose from recent behavioral, neuroscientific, and modeling studies that examined LMDF on both an item and a list level basis. The findings support the view that ROE plays a critical role for the list 2 enhancement effect in LMDF. Alternative explanations of the effect and the generalizability of ROE to other experimental tasks are discussed.