## 510 Mathematik

### Refine

#### Keywords

- Funktionalanalysis (5) (remove)

Given a compact set K in R^d, the theory of extension operators examines the question, under which conditions on K, the linear and continuous restriction operators r_n:E^n(R^d)→E^n(K),f↦(∂^α f|_K)_{|α|≤n}, n in N_0 and r:E(R^d)→E(K),f↦(∂^α f|_K)_{α in N_0^d}, have a linear and continuous right inverse. This inverse is called extension operator and this problem is known as Whitney's extension problem, named after Hassler Whitney. In this context, E^n(K) respectively E(K) denote spaces of Whitney jets of order n respectively of infinite order. With E^n(R^d) and E(R^d), we denote the spaces of n-times respectively infinitely often continuously partially differentiable functions on R^d. Whitney already solved the question for finite order completely. He showed that it is always possible to construct a linear and continuous right inverse E_n for r_n. This work is concerned with the question of how the existence of a linear and continuous right inverse of r, fulfilling certain continuity estimates, can be characterized by properties of K. On E(K), we introduce a full real scale of generalized Whitney seminorms (|·|_{s,K})_{s≥0}, where |·|_{s,K} coincides with the classical Whitney seminorms for s in N_0. We equip also E(R^d) with a family (|·|_{s,L})_{s≥0} of those seminorms, where L shall be a a compact set with K in L-°. This family of seminorms on E(R^d) suffices to characterize the continuity properties of an extension operator E, since we can without loss of generality assume that E(E(K)) in D^s(L).
In Chapter 2, we introduce basic concepts and summarize the classical results of Whitney and Stein.
In Chapter 3, we modify the classical construction of Whitney's operators E_n and show that |E_n(·)|_{s,L}≤C|·|_{s,K} for s in[n,n+1).
In Chapter 4, we generalize a result of Frerick, Jordá and Wengenroth and show that LMI(1) for K implies the existence of an extension operator E without loss of derivatives, i.e. we have it fulfils |E(·)|_{s,L}≤C|·|_{s,K} for all s≥0. We show that a large class of self similar sets, which includes the Cantor set and the Sierpinski triangle, admits an extensions operator without loss of derivatives.
In Chapter 5 we generalize a result of Frerick, Jordá and Wengenroth and show that WLMI(r) for r≥1 implies the existence of a tame linear extension operator E having a homogeneous loss of derivatives, such that |E(·)|_{s,L}≤C|·|_{(r+ε)s,K} for all s≥0 and all ε>0.
In the last chapter we characterize the existence of an extension operator having an arbitrary loss of derivatives by the existence of measures on K.

In splitting theory of locally convex spaces we investigate evaluable characterizations of the pairs (E, X) of locally convex spaces such that each exact sequence 0 -> X -> G -> E -> 0 of locally convex spaces splits, i.e. either X -> G has a continuous linear left inverse or G -> E has a continuous linear right inverse. In the thesis at hand we deal with splitting of short exact sequences of so-called PLH spaces, which are defined as projective limits of strongly reduced spectra of strong duals of Fréchet-Hilbert spaces. This class of locally convex spaces contains most of the spaces of interest for application in the theory of partial differential operators as the space of Schwartz distributions , the space of real analytic functions and various spaces of ultradifferentiable functions and ultradistributions. It also contains non-Schwartz spaces as B(2,k,loc)(Ω) and spaces of smooth and square integrable functions that are not covered by the current theory for PLS spaces. We prove a complete characterizations of the above problem in the case of X being a PLH space and E either being a Fréchet-Hilbert space or a strong dual of one by conditions of type (T ). To this end, we establish the full homological toolbox of Yoneda Ext functors in exact categories for the category of PLH spaces including the long exact sequence, which in particular involves a thorough discussion of the proper concept of exactness. Furthermore, we exhibit the connection to the parameter dependence problem via the Hilbert tensor product for hilbertizable locally convex spaces. We show that the Hilbert tensor product of two PLH spaces is again a PLH space which in particular proves the positive answer to Grothendieck- problème des topologies. In addition to that we give a complete characterization of the vanishing of the first derivative of the functor proj for tensorized PLH spectra if one of the PLH spaces E and X meets some nuclearity assumptions. To apply our results to concrete cases we establish sufficient conditions of (DN)-(Ω) type and apply them to the parameter dependence problem for partial differential operators with constant coefficients on B(2,k,loc)(Ω) spaces as well as to the smooth and square integrable parameter dependence problem. Concluding we give a complete solution of all the problems under consideration for PLH spaces of Köthe type.

One of the main tasks in mathematics is to answer the question whether an equation possesses a solution or not. In the 1940- Thom and Glaeser studied a new type of equations that are given by the composition of functions. They raised the following question: For which functions Î¨ does the equation F(Î¨)=f always have a solution. Of course this question only makes sense if the right hand side f satisfies some a priori conditions like being contained in the closure of the space of all compositions with Î¨ and is easy to answer if F and f are continuous functions. Considering further restrictions to these functions, especially to F, extremely complicates the search for an adequate solution. For smooth functions one can already find deep results by Bierstone and Milman which answer the question in the case of a real-analytic function Î¨. This work contains further results for a different class of functions, namely those Î¨ that are smooth and injective. In the case of a function Î¨ of a single real variable, the question can be fully answered and we give three conditions that are both sufficient and necessary in order for the composition equation to always have a solution. Furthermore one can unify these three conditions to show that they are equivalent to the fact that Î¨ has a locally Hölder-continuous inverse. For injective functions Î¨ of several real variables we give necessary conditions for the composition equation to be solvable. For instance Î¨ should satisfy some form of local distance estimate for the partial derivatives. Under the additional assumption of the Whitney-regularity of the image of Î¨, we can give sufficient conditions for flat functions f on the critical set of Î¨ to possess a solution F(Î¨)=f.

The subject of this thesis is a homological approach to the splitting theory of PLS-spaces, i.e. to the question for which topologically exact short sequences 0->X->Y->Z->0 of PLS-spaces X,Y,Z the right-hand map admits a right inverse. We show that the category (PLS) of PLS-spaces and continuous linear maps is an additive category in which every morphism admits a kernel and a cokernel, i.e. it is pre-abelian. However, we also show that it is neither quasi-abelian nor semi-abelian. As a foundation for our homological constructions we show the more general result that every pre-abelian category admits a largest exact structure in the sense of Quillen. In the pre-abelian category (PLS) this exact structure consists precisely of the topologically exact short sequences of PLS-spaces. Using a construction of Ext-functors due to Yoneda, we show that one can define for each PLS-space A and every natural number k the k-th abelian-group valued covariant and contravariant Ext-functors acting on the category (PLS) of PLS-spaces, which induce for every topologically exact short sequence of PLS-spaces a long exact sequence of abelian groups and group morphisms. These functors are studied in detail and we establish a connection between the Ext-functors of PLS-spaces and the Ext-functors for LS-spaces. Through this connection we arrive at an analogue of a result for Fréchet spaces which connects the first derived functor of the projective limit with the first Ext-functor and also gives sufficient conditions for the vanishing of the higher Ext-functors. Finally, we show that Ext^k(E,F) = 0 for a k greater or equal than 1, whenever E is a closed subspace and F is a Hausdorff-quotient of the space of distributions, which generalizes a result of Wengenroth that is itself a generalization of results due to Domanski and Vogt.

The subject of this thesis is hypercyclic, mixing, and chaotic C0-semigroups on Banach spaces. After introducing the relevant notions and giving some examples the so called hypercyclicity criterion and its relation with weak mixing is treated. Some new equivalent formulations of the criterion are given which are used to derive a very short proof of the well-known fact that a C0-semigroup is weakly mixing if and only if each of its operators is. Moreover, it is proved that under some "regularity conditions" each hypercyclic C0-semigroup is weakly mixing. Furthermore, it is shown that for a hypercyclic C0-semigroup there is always a dense set of hypercyclic vectors having infinitely differentiable trajectories. Chaotic C0-semigroups are also considered. It is proved that they are always weakly mixing and that in certain cases chaoticity is already implied by the existence of a single periodic point. Moreover, it is shown that strongly elliptic differential operators on bounded C^1-domains never generate chaotic C0-semigroups. A thorough investigation of transitivity, weak mixing, and mixing of weighted compositioin operators follows and complete characterisations of these properties are derived. These results are then used to completely characterise hypercyclicity, weak mixing, and mixing of C0-semigroups generated by first order partial differential operators. Moreover, a characterisation of chaos for these C0-semigroups is attained. All these results are achieved on spaces of p-integrable functions as well as on spaces of continuous functions and illustrated by various concrete examples.