510 Mathematik
Refine
Keywords
- Funktionentheorie (6) (remove)
We will consider discrete dynamical systems (X,T) which consist of a state space X and a linear operator T acting on X. Given a state x in X at time zero, its state at time n is determined by the n-th iteration T^n(x). We are interested in the long-term behaviour of this system, that means we want to know how the sequence (T^n (x))_(n in N) behaves for increasing n and x in X. In the first chapter, we will sum up the relevant definitions and results of linear dynamics. In particular, in topological dynamics the notions of hypercyclic, frequently hypercyclic and mixing operators will be presented. In the setting of measurable dynamics, the most important definitions will be those of weakly and strongly mixing operators. If U is an open set in the (extended) complex plane containing 0, we can define the Taylor shift operator on the space H(U) of functions f holomorphic in U as Tf(z) = (f(z)- f(0))/z if z is not equal to 0 and otherwise Tf(0) = f'(0). In the second chapter, we will start examining the Taylor shift on H(U) endowed with the topology of locally uniform convergence. Depending on the choice of U, we will study whether or not the Taylor shift is weakly or strongly mixing in the Gaussian sense. Next, we will consider Banach spaces of functions holomorphic on the unit disc D. The first section of this chapter will sum up the basic properties of Bergman and Hardy spaces in order to analyse the dynamical behaviour of the Taylor shift on these Banach spaces in the next part. In the third section, we study the space of Cauchy transforms of complex Borel measures on the unit circle first endowed with the quotient norm of the total variation and then with a weak-* topology. While the Taylor shift is not even hypercyclic in the first case, we show that it is mixing for the latter case. In Chapter 4, we will first introduce Bergman spaces A^p(U) for general open sets and provide approximation results which will be needed in the next chapter where we examine the Taylor shift on these spaces on its dynamical properties. In particular, for 1<=p<2 we will find sufficient conditions for the Taylor shift to be weakly mixing or strongly mixing in the Gaussian sense. For p>=2, we consider specific Cauchy transforms in order to determine open sets U such that the Taylor shift is mixing on A^p(U). In both sections, we will illustrate the results with appropriate examples. Finally, we apply our results to universal Taylor series. The results of Chapter 5 about the Taylor shift allow us to consider the behaviour of the partial sums of the Taylor expansion of functions in general Bergman spaces outside its disc of convergence.
In recent years, the study of dynamical systems has developed into a central research area in mathematics. Actually, in combination with keywords such as "chaos" or "butterfly effect", parts of this theory have been incorporated in other scientific fields, e.g. in physics, biology, meteorology and economics. In general, a discrete dynamical system is given by a set X and a self-map f of X. The set X can be interpreted as the state space of the system and the function f describes the temporal development of the system. If the system is in state x ∈ X at time zero, its state at time n ∈ N is denoted by f^n(x), where f^n stands for the n-th iterate of the map f. Typically, one is interested in the long-time behaviour of the dynamical system, i.e. in the behaviour of the sequence (f^n(x)) for an arbitrary initial state x ∈ X as the time n increases. On the one hand, it is possible that there exist certain states x ∈ X such that the system behaves stably, which means that f^n(x) approaches a state of equilibrium for n→∞. On the other hand, it might be the case that the system runs unstably for some initial states x ∈ X so that the sequence (f^n(x)) somehow shows chaotic behaviour. In case of a non-linear entire function f, the complex plane always decomposes into two disjoint parts, the Fatou set F_f of f and the Julia set J_f of f. These two sets are defined in such a way that the sequence of iterates (f^n) behaves quite "wildly" or "chaotically" on J_f whereas, on the other hand, the behaviour of (f^n) on F_f is rather "nice" and well-understood. However, this nice behaviour of the iterates on the Fatou set can "change dramatically" if we compose the iterates from the left with just one other suitable holomorphic function, i.e. if we consider sequences of the form (g∘f^n) on D, where D is an open subset of F_f with f(D)⊂ D and g is holomorphic on D. The general aim of this work is to study the long-time behaviour of such modified sequences. In particular, we will prove the existence of holomorphic functions g on D having the property that the behaviour of the sequence of compositions (g∘f^n) on the set D becomes quite similarly chaotic as the behaviour of the sequence (f^n) on the Julia set of f. With this approach, we immerse ourselves into the theory of universal families and hypercyclic operators, which itself has developed into an own branch of research. In general, for topological spaces X, Y and a family {T_i: i ∈ I} of continuous functions T_i:X→Y, an element x ∈ X is called universal for the family {T_i: i ∈ I} if the set {T_i(x): i ∈ I} is dense in Y. In case that X is a topological vector space and T is a continuous linear operator on X, a vector x ∈ X is called hypercyclic for T if it is universal for the family {T^n: n ∈ N}. Thus, roughly speaking, universality and hypercyclicity can be described via the following two aspects: There exists a single object which allows us, via simple analytical operations, to approximate every element of a whole class of objects. In the above situation, i.e. for a non-linear entire function f and an open subset D of F_f with f(D)⊂ D, we endow the space H(D) of holomorphic functions on D with the topology of locally uniform convergence and we consider the map C_f:H(D)→H(D), C_f(g):=g∘f|_D, which is called the composition operator with symbol f. The transform C_f is a continuous linear operator on the Fréchet space H(D). In order to show that the above-mentioned "nice" behaviour of the sequence of iterates (f^n) on the set D ⊂ F_f can "change dramatically" if we compose the iterates from the left with another suitable holomorphic function, our aim consists in finding functions g ∈ H(D) which are hypercyclic for C_f. Indeed, for each hypercyclic function g for C_f, the set of compositions {g∘f^n|_D: n ∈ N} is dense in H(D) so that the sequence of compositions (g∘f^n|_D) is kind of "maximally divergent" " meaning that each function in H(D) can be approximated locally uniformly on D via subsequences of (g∘f^n|_D). This kind of behaviour stands in sharp contrast to the fact that the sequence of iterates (f^n) itself converges, behaves like a rotation or shows some "wandering behaviour" on each component of F_f. To put it in a nutshell, this work combines the theory of non-linear complex dynamics in the complex plane with the theory of dynamics of continuous linear operators on spaces of holomorphic functions. As far as the author knows, this approach has not been investigated before.
The Hadamard product of two holomorphic functions which is defined via a convolution integral constitutes a generalization of the Hadamard product of two power series which is obtained by pointwise multiplying their coefficients. Based on the integral representation mentioned above, an associative law for this convolution is shown. The main purpose of this thesis is the examination of the linear and continuous Hadamard convolution operators. These operators map between spaces of holomorphic functions and send - with a fixed function phi - a function f to the convolution of phi and f. The transposed operator is computed and turns out to be a Hadamard convolution operator, too, mapping between spaces of germs of holomorphic functions. The kernel of Hadamard convolution operators is investigated and necessary and sufficient conditions for those operators to be injective or to have dense range are given. In case that the domain of holomorphy of the function phi allows a Mellin transform of phi, certain (generalized) monomials are identified as eigenfunctions of the corresponding operator. By means of this result and some extract of the theory of growth of entire functions, further propositions concerning the injectivity, the denseness of the range or the surjectivity of Hadamard convolution operators are shown. The relationship between Hadamard convolution operators, operators which are defined via the convolution with an analytic functional and differential operators of infinite order is investigated and the results which are obtained in the thesis are put into the research context. The thesis ends with an application of the results to the approximation of holomorphic functions by lacunary polynomials. On the one hand, the question under which conditions lacunary polynomials are dense in the space of all holomorphic functions is investigated and on the other hand, the rate of approximation is considered. In this context, a result corresponding to the Bernstein-Walsh theorem is formulated.
Das erste Beispiel einer so genannten universellen holomorphen Funktion stammt von Birkhoff, welcher im Jahre 1929 die Existenz einer ganzen Funktion beweisen konnte, die gewissermaßen jede ganze Funktion durch geeignete Translationen approximieren kann. In der Folgezeit hat sich der Bereich der "universellen Approximation" zu einem eigenständigen Gebiet innerhalb der komplexen Approximationstheorie entwickelt, und es gibt eine Vielzahl an Ergebnissen über universelle Funktionen. Hierbei wurde sich allerdings fast ausschließlich auf das Studium holomorpher und ganzer Funktionen beschränkt, insbesondere die Klasse der meromorphen Funktionen wurde bisher kaum auf das Phänomen der Universalität hin untersucht. Die vorliegende Arbeit beschäftigt sich mit universeller meromorpher Approximation, und geht der Fragestellung nach, ob meromorphe Funktionen mit gewissen Universalitätseigenschaften existieren, und ob die klassischen Ergebnisse aus der universellen holomorphen Approximation auf den meromorphen Fall erweiterbar sind. Hierbei wird zunächst zwischen Translations- und Streckungsuniversalität unterschieden und bewiesen, dass in beiden Fällen jeweils eine im Raum der meromorphen Funktionen residuale Menge an universellen Funktionen existiert. Weiterhin werden die Eigenschaften dieser Funktionen ausführlich studiert. Anschließend werden meromorphe Funktionen auf Ableitungsuniversalität hin untersucht. Hierbei wird einerseits gezeigt, dass im Allgemeinen keine positiven Ergebnisse möglich sind, während andererseits eine spezielle Klasse meromorpher Funktionen betrachtet wird, für welche universelles Verhalten der sukzessiven Ableitungen nachgewiesen werden kann.
Wenn eine stets von Null verschiedene Nullfolge h_n gegeben ist, dann existieren nach einem Satz von Marcinkiewicz stetige Funktionen f vom Intervall [0,1] in die reelle Achse, die in dem Sinne maximal nicht differenzierbar sind, dass zu jeder messbaren Funktion g ein Teilfolge n_k existiert, so dass (f(x+h_n_k)-f(x))/h_n_k fast sicher gegen g konvergiert. Im ersten Teil dieser Arbeit beweisen wir Erweiterungen dieses Satzes im Mehrdimensionalen und Analoga für Funktionen in der komplexen Ebene. Der zweite Teil dieser Arbeit befasst sich mit Operatoren die in enger Beziehung zum Satz von Korovkin über positive lineare Operatoren stehen. Wir zeigen, dass es Operatoren L_n gibt, die jeweils eine der Eigenschaften aus dem Satz von Korovkin nicht erfüllen und gleichzeitig eine residuale Menge von Funktionen f existiert, so dass L_nf nicht nur nicht gegen f konvergiert, sondern sogar dicht im Raum aller stetigen Funktionen des Intervalls [0,1] ist. Ähnliche Phänomene werden bei polynomieller Interpolation untersucht.
Eine ganze Funktion φ heißt T-universell bezüglich einer gegebenen Folge b:={b_{n}\}_{n \in ℕ komplexer Zahlen mit b_{n} \to \infty$, falls eine geeignete Folge φ(z+b_{n_{k}})\}$ additiver Translationen von φ lokal gleichmäßig in ℂ gegen jede vorgegebene ganze Funktion konvergiert. Ferner nennen wir eine ganze Funktion φ, für welche eine geeignete Folge φ{(n_k)}\}$ ihrer Ableitungen lokal gleichmäßig in ℂ gegen jede vorgegebene ganze Funktion konvergiert, ableitungsuniversell. Die Existenz solcher Funktionen wurde von Birkhoff (1929) und MacLane (1952) bzw. Verallgemeinerungen ihrer Ergebnisse gesichert. In dieser Arbeit wird die Konstruktion solcher Funktionen, die zusätzlich auf jeder Geraden beschränkt sind oder Nullstellen an bestimmten vorgegebenen Punkten besitzen, studiert. Im Besonderen stellte sich hierbei heraus, dass die Menge aller bezüglich einer gegebenen Folge b - welche einer gewissen Bedingung genügt - T-universellen Funktionen, die überdies auf jeder Geraden beschränkt sind, zwar dicht, aber nicht residual im Raum aller ganzen Funktionen versehen mit der lokal-gleichmäßigen Topologie ist. Ebenso überraschend ist die Konstruktion von T-universellen Funktionen, welche eine "regelmäßige Nullstellenasymptotik" besitzen.