510 Mathematik
Refine
Year of publication
- 2020 (6) (remove)
Keywords
- Amtliche Statistik (1)
- Branching Diffusion (1)
- Common Noise (1)
- Discrete Optimization, Linear Programming, Integer Programming, Extended Formulation, Graph Theory, Branch & Bound (1)
- Discrete-Time Impulse Control (1)
- Maschinelles Lernen (1)
- Mean Field Games (1)
- Mixed Local-Nonlocal PDE (1)
- Navier-Stokes-Gleichung (1)
- Neuronales Netz (1)
Institute
- Fachbereich 4 (5)
- Mathematik (1)
This work studies typical mathematical challenges occurring in the modeling and simulation of manufacturing processes of paper or industrial textiles. In particular, we consider three topics: approximate models for the motion of small inertial particles in an incompressible Newtonian fluid, effective macroscopic approximations for a dilute particle suspension contained in a bounded domain accounting for a non-uniform particle distribution and particle inertia, and possibilities for a reduction of computational cost in the simulations of slender elastic fibers moving in a turbulent fluid flow.
We consider the full particle-fluid interface problem given in terms of the Navier-Stokes equations coupled to momentum equations of a small rigid body. By choosing an appropriate asymptotic scaling for the particle-fluid density ratio and using an asymptotic expansion for the solution components, we derive approximations of the original interface problem. The approximate systems differ according to the chosen scaling of the density ratio in their physical behavior allowing the characterization of different inertial regimes.
We extend the asymptotic approach to the case of many particles suspended in a Newtonian fluid. Under specific assumptions for the combination of particle size and particle number, we derive asymptotic approximations of this system. The approximate systems describe the particle motion which allows to use a mean field approach in order to formulate the continuity equation for the particle probability density function. The coupling of the latter with the approximation for the fluid momentum equation then reveals a macroscopic suspension description which accounts for non-uniform particle distributions in space and for small particle inertia.
A slender fiber in a turbulent air flow can be modeled as a stochastic inextensible one-dimensionally parametrized Kirchhoff beam, i.e., by a stochastic partial differential algebraic equation. Its simulations involve the solution of large non-linear systems of equations by Newton's method. In order to decrease the computational time, we explore different methods for the estimation of the solution. Additionally, we apply smoothing techniques to the Wiener Process in order to regularize the stochastic force driving the fiber, exploring their respective impact on the solution and performance. We also explore the applicability of the Wiener chaos expansion as a solution technique for the simulation of the fiber dynamics.
This thesis addresses three different topics from the fields of mathematical finance, applied probability and stochastic optimal control. Correspondingly, it is subdivided into three independent main chapters each of which approaches a mathematical problem with a suitable notion of a stochastic particle system.
In Chapter 1, we extend the branching diffusion Monte Carlo method of Henry-Labordère et. al. (2019) to the case of parabolic PDEs with mixed local-nonlocal analytic nonlinearities. We investigate branching diffusion representations of classical solutions, and we provide sufficient conditions under which the branching diffusion representation solves the PDE in the viscosity sense. Our theoretical setup directly leads to a Monte Carlo algorithm, whose applicability is showcased in two stylized high-dimensional examples. As our main application, we demonstrate how our methodology can be used to value financial positions with defaultable, systemically important counterparties.
In Chapter 2, we formulate and analyze a mathematical framework for continuous-time mean field games with finitely many states and common noise, including a rigorous probabilistic construction of the state process. The key insight is that we can circumvent the master equation and reduce the mean field equilibrium to a system of forward-backward systems of (random) ordinary differential equations by conditioning on common noise events. We state and prove a corresponding existence theorem, and we illustrate our results in three stylized application examples. In the absence of common noise, our setup reduces to that of Gomes, Mohr and Souza (2013) and Cecchin and Fischer (2020).
In Chapter 3, we present a heuristic approach to tackle stochastic impulse control problems in discrete time. Based on the work of Bensoussan (2008) we reformulate the classical Bellman equation of stochastic optimal control in terms of a discrete-time QVI, and we prove a corresponding verification theorem. Taking the resulting optimal impulse control as a starting point, we devise a self-learning algorithm that estimates the continuation and intervention region of such a problem. Its key features are that it explores the state space of the underlying problem by itself and successively learns the behavior of the optimally controlled state process. For illustration, we apply our algorithm to a classical example problem, and we give an outlook on open questions to be addressed in future research.
Traditionell werden Zufallsstichprobenerhebungen so geplant, dass nationale Statistiken zuverlässig mit einer adäquaten Präzision geschätzt werden können. Hierbei kommen vorrangig designbasierte, Modell-unterstützte (engl. model assisted) Schätzmethoden zur Anwendung, die überwiegend auf asymptotischen Eigenschaften beruhen. Für kleinere Stichprobenumfänge, wie man sie für Small Areas (Domains bzw. Subpopulationen) antrifft, eignen sich diese Schätzmethoden eher nicht, weswegen für diese Anwendung spezielle modellbasierte Small Area-Schätzverfahren entwickelt wurden. Letztere können zwar Verzerrungen aufweisen, besitzen jedoch häufig einen kleineren mittleren quadratischen Fehler der Schätzung als dies für designbasierte Schätzer der Fall ist. Den Modell-unterstützten und modellbasierten Methoden ist gemeinsam, dass sie auf statistischen Modellen beruhen; allerdings in unterschiedlichem Ausmass. Modell-unterstützte Verfahren sind in der Regel so konstruiert, dass der Beitrag des Modells bei sehr grossen Stichprobenumfängen gering ist (bei einer Grenzwertbetrachtung sogar wegfällt). Bei modellbasierten Methoden nimmt das Modell immer eine tragende Rolle ein, unabhängig vom Stichprobenumfang. Diese Überlegungen veranschaulichen, dass das unterstellte Modell, präziser formuliert, die Güte der Modellierung für die Qualität der Small Area-Statistik von massgeblicher Bedeutung ist. Wenn es nicht gelingt, die empirischen Daten durch ein passendes Modell zu beschreiben und mit den entsprechenden Methoden zu schätzen, dann können massive Verzerrungen und / oder ineffiziente Schätzungen resultieren.
Die vorliegende Arbeit beschäftigt sich mit der zentralen Frage der Robustheit von Small Area-Schätzverfahren. Als robust werden statistische Methoden dann bezeichnet, wenn sie eine beschränkte Einflussfunktion und einen möglichst hohen Bruchpunkt haben. Vereinfacht gesprochen zeichnen sich robuste Verfahren dadurch aus, dass sie nur unwesentlich durch Ausreisser und andere Anomalien in den Daten beeinflusst werden. Die Untersuchung zur Robustheit konzentriert sich auf die folgenden Modelle bzw. Schätzmethoden:
i) modellbasierte Schätzer für das Fay-Herriot-Modell (Fay und Herrot, 1979, J. Amer. Statist. Assoc.) und das elementare Unit-Level-Modell (vgl. Battese et al., 1988, J. Amer. Statist. Assoc.).
ii) direkte, Modell-unterstützte Schätzer unter der Annahme eines linearen Regressionsmodells.
Das Unit-Level-Modell zur Mittelwertschätzung beruht auf einem linearen gemischten Gauss'schen Modell (engl. mixed linear model, MLM) mit blockdiagonaler Kovarianzmatrix. Im Gegensatz zu bspw. einem multiplen linearen Regressionsmodell, besitzen MLM-Modelle keine nennenswerten Invarianzeigenschaften, so dass eine Kontamination der abhängigen Variablen unvermeidbar zu verzerrten Parameterschätzungen führt. Für die Maximum-Likelihood-Methode kann die resultierende Verzerrung nahezu beliebig groß werden. Aus diesem Grund haben Richardson und Welsh (1995, Biometrics) die robusten Schätzmethoden RML 1 und RML 2 entwickelt, die bei kontaminierten Daten nur eine geringe Verzerrung aufweisen und wesentlich effizienter sind als die Maximum-Likelihood-Methode. Eine Abwandlung von Methode RML 2 wurde Sinha und Rao (2009, Canad. J. Statist.) für die robuste Schätzung von Unit-Level-Modellen vorgeschlagen. Allerdings erweisen sich die gebräuchlichen numerischen Verfahren zur Berechnung der RML-2-Methode (dies gilt auch für den Vorschlag von Sinha und Rao) als notorisch unzuverlässig. In dieser Arbeit werden zuerst die Konvergenzprobleme der bestehenden Verfahren erörtert und anschließend ein numerisches Verfahren vorgeschlagen, das sich durch wesentlich bessere numerische Eigenschaften auszeichnet. Schließlich wird das vorgeschlagene Schätzverfahren im Rahmen einer Simulationsstudie untersucht und anhand eines empirischen Beispiels zur Schätzung von oberirdischer Biomasse in norwegischen Kommunen illustriert.
Das Modell von Fay-Herriot kann als Spezialfall eines MLM mit blockdiagonaler Kovarianzmatrix aufgefasst werden, obwohl die Varianzen des Zufallseffekts für die Small Areas nicht geschätzt werden müssen, sondern als bereits bekannte Größen betrachtet werden. Diese Eigenschaft kann man sich nun zunutze machen, um die von Sinha und Rao (2009) vorgeschlagene Robustifizierung des Unit-Level-Modells direkt auf das Fay-Herriot Model zu übertragen. In der vorliegenden Arbeit wird jedoch ein alternativer Vorschlag erarbeitet, der von der folgenden Beobachtung ausgeht: Fay und Herriot (1979) haben ihr Modell als Verallgemeinerung des James-Stein-Schätzers motiviert, wobei sie sich einen empirischen Bayes-Ansatz zunutze machen. Wir greifen diese Motivation des Problems auf und formulieren ein analoges robustes Bayes'sches Verfahren. Wählt man nun in der robusten Bayes'schen Problemformulierung die ungünstigste Verteilung (engl. least favorable distribution) von Huber (1964, Ann. Math. Statist.) als A-priori-Verteilung für die Lokationswerte der Small Areas, dann resultiert als Bayes-Schätzer [=Schätzer mit dem kleinsten Bayes-Risk] die Limited-Translation-Rule (LTR) von Efron und Morris (1971, J. Amer. Statist. Assoc.). Im Kontext der frequentistischen Statistik kann die Limited-Translation-Rule nicht verwendet werden, weil sie (als Bayes-Schätzer) auf unbekannten Parametern beruht. Die unbekannten Parameter können jedoch nach dem empirischen Bayes-Ansatz an der Randverteilung der abhängigen Variablen geschätzt werden. Hierbei gilt es zu beachten (und dies wurde in der Literatur vernachlässigt), dass die Randverteilung unter der ungünstigsten A-priori-Verteilung nicht einer Normalverteilung entspricht, sondern durch die ungünstigste Verteilung nach Huber (1964) beschrieben wird. Es ist nun nicht weiter erstaunlich, dass es sich bei den Maximum-Likelihood-Schätzern von Regressionskoeffizienten und Modellvarianz unter der Randverteilung um M-Schätzer mit der Huber'schen psi-Funktion handelt.
Unsere theoriegeleitete Herleitung von robusten Schätzern zum Fay-Herriot-Modell zeigt auf, dass bei kontaminierten Daten die geschätzte LTR (mit Parameterschätzungen nach der M-Schätzmethodik) optimal ist und, dass die LTR ein integraler Bestandteil der Schätzmethodik ist (und nicht als ``Zusatz'' o.Ä. zu betrachten ist, wie dies andernorts getan wird). Die vorgeschlagenen M-Schätzer sind robust bei Vorliegen von atypischen Small Areas (Ausreissern), wie dies auch die Simulations- und Fallstudien zeigen. Um auch Robustheit bei Vorkommen von einflussreichen Beobachtungen in den unabhängigen Variablen zu erzielen, wurden verallgemeinerte M-Schätzer (engl. generalized M-estimator) für das Fay-Herriot-Modell entwickelt.
Many NP-hard optimization problems that originate from classical graph theory, such as the maximum stable set problem and the maximum clique problem, have been extensively studied over the past decades and involve the choice of a subset of edges or vertices. There usually exist combinatorial methods that can be applied to solve them directly in the graph.
The most simple method is to enumerate feasible solutions and select the best. It is not surprising that this method is very slow oftentimes, so the task is to cleverly discard fruitless search space during the search. An alternative method to solve graph problems is to formulate integer linear programs, such that their solution yields an optimal solution to the original optimization problem in the graph. In order to solve integer linear programs, one can start with relaxing the integer constraints and then try to find inequalities for cutting off fractional extreme points. In the best case, it would be possible to describe the convex hull of the feasible region of the integer linear program with a set of inequalities. In general, giving a complete description of this convex hull is out of reach, even if it has a polynomial number of facets. Thus, one tries to strengthen the (weak) relaxation of the integer linear program best possible via strong inequalities that are valid for the convex hull of feasible integer points.
Many classes of valid inequalities are of exponential size. For instance, a graph can have exponentially many odd cycles in general and therefore the number of odd cycle inequalities for the maximum stable set problem is exponential. It is sometimes possible to check in polynomial time if some given point violates any of the exponentially many inequalities. This is indeed the case for the odd cycle inequalities for the maximum stable set problem. If a polynomial time separation algorithm is known, there exists a formulation of polynomial size that contains a given point if and only if it does not violate one of the (potentially exponentially many) inequalities. This thesis can be divided into two parts. The first part is the main part and it contains various new results. We present new extended formulations for several optimization problems, i.e. the maximum stable set problem, the nonconvex quadratic program with box
constraints and the p-median problem. In the second part we modify a very fast algorithm for finding a maximum clique in very large sparse graphs. We suggest and compare three alternative versions of this algorithm to the original version and compare their strengths and weaknesses.
Data used for the purpose of machine learning are often erroneous. In this thesis, p-quasinorms (p<1) are employed as loss functions in order to increase the robustness of training algorithms for artificial neural networks. Numerical issues arising from these loss functions are addressed via enhanced optimization algorithms (proximal point methods; Frank-Wolfe methods) based on the (non-monotonic) Armijo-rule. Numerical experiments comprising 1100 test problems confirm the effectiveness of the approach. Depending on the parametrization, an average reduction of the absolute residuals of up to 64.6% is achieved (aggregated over 100 test problems).
In this thesis we study structure-preserving model reduction methods for the efficient and reliable approximation of dynamical systems. A major focus is the approximation of a nonlinear flow problem on networks, which can, e.g., be used to describe gas network systems. Our proposed approximation framework guarantees so-called port-Hamiltonian structure and is general enough to be realizable by projection-based model order reduction combined with complexity reduction. We divide the discussion of the flow problem into two parts, one concerned with the linear damped wave equation and the other one with the general nonlinear flow problem on networks.
The study around the linear damped wave equation relies on a Galerkin framework, which allows for convenient network generalizations. Notable contributions of this part are the profound analysis of the algebraic setting after space-discretization in relation to the infinite dimensional setting and its implications for model reduction. In particular, this includes the discussion of differential-algebraic structures associated to the network-character of our problem and the derivation of compatibility conditions related to fundamental physical properties. Amongst the different model reduction techniques, we consider the moment matching method to be a particularly well-suited choice in our framework.
The Galerkin framework is then appropriately extended to our general nonlinear flow problem. Crucial supplementary concepts are required for the analysis, such as the partial Legendre transform and a more careful discussion of the underlying energy-based modeling. The preservation of the port-Hamiltonian structure after the model-order- and complexity-reduction-step represents a major focus of this work. Similar as in the analysis of the model order reduction, compatibility conditions play a crucial role in the analysis of our complexity reduction, which relies on a quadrature-type ansatz. Furthermore, energy-stable time-discretization schemes are derived for our port-Hamiltonian approximations, as structure-preserving methods from literature are not applicable due to our rather unconventional parametrization of the solution.
Apart from the port-Hamiltonian approximation of the flow problem, another topic of this thesis is the derivation of a new extension of moment matching methods from linear systems to quadratic-bilinear systems. Most system-theoretic reduction methods for nonlinear systems rely on multivariate frequency representations. Our approach instead uses univariate frequency representations tailored towards user-defined families of inputs. Then moment matching corresponds to a one-dimensional interpolation problem rather than to a multi-dimensional interpolation as for the multivariate approaches, i.e., it involves fewer interpolation frequencies to be chosen. The notion of signal-generator-driven systems, variational expansions of the resulting autonomous systems as well as the derivation of convenient tensor-structured approximation conditions are the main ingredients of this part. Notably, our approach allows for the incorporation of general input relations in the state equations, not only affine-linear ones as in existing system-theoretic methods.