## 510 Mathematik

### Refine

#### Year of publication

- 2021 (2) (remove)

#### Document Type

- Article (1)
- Doctoral Thesis (1)

#### Keywords

- Cech cohomology of leafwise constant functions (1)
- Cech-de Rham cohomology (1)
- Differentialgeometrie (1)
- Electricity market equilibrium models (1)
- Linear complementarity problems (1)
- Nash–Cournot competition (1)
- Perfect competition (1)
- Robust optimization (1)
- de Rham cohomology (1)
- foliated manifolds (1)

#### Institute

- Fachbereich 4 (1)
- Mathematik (1)

This paper mainly studies two topics: linear complementarity problems for modeling electricity market equilibria and optimization under uncertainty. We consider both perfectly competitive and Nash–Cournot models of electricity markets and study their robustifications using strict robustness and the -approach. For three out of the four combinations of economic competition and robustification, we derive algorithmically tractable convex optimization counterparts that have a clear-cut economic interpretation. In the case of perfect competition, this result corresponds to the two classic welfare theorems, which also apply in both considered robust cases that again yield convex robustified problems. Using the mentioned counterparts, we can also prove the existence and, in some cases, uniqueness of robust equilibria. Surprisingly, it turns out that there is no such economic sensible counterpart for the case of -robustifications of Nash–Cournot models. Thus, an analog of the welfare theorems does not hold in this case. Finally, we provide a computational case study that illustrates the different effects of the combination of economic competition and uncertainty modeling.

In order to classify smooth foliated manifolds, which are smooth maifolds equipped with a smooth foliation, we introduce the de Rham cohomologies of smooth foliated manifolds. These cohomologies are build in a similar way as the de Rham cohomologies of smooth manifolds. We develop some tools to compute these cohomologies. For example we proof a Mayer Vietoris theorem for foliated de Rham cohomology and show that these cohomologys are invariant under integrable homotopy. A generalization of a known Künneth formula, which relates the cohomologies of a product foliation with its factors, is discussed. In particular, this envolves a splitting theory of sequences between Frechet spaces and a theory of projective spectrums. We also prove, that the foliated de Rham cohomology is isomorphic to the Cech-de Rham cohomology and the Cech cohomology of leafwise constant functions of an underlying so called good cover.