## 510 Mathematik

Die Dissertation beschäftigt sich mit einer neuartigen Art von Branch-and-Bound Algorithmen, deren Unterschied zu klassischen Branch-and-Bound Algorithmen darin besteht, dass
das Branching durch die Addition von nicht-negativen Straftermen zur Zielfunktion erfolgt
anstatt durch das Hinzufügen weiterer Nebenbedingungen. Die Arbeit zeigt die theoretische Korrektheit des Algorithmusprinzips für verschiedene allgemeine Klassen von Problemen und evaluiert die Methode für verschiedene konkrete Problemklassen. Für diese Problemklassen, genauer Monotone und Nicht-Monotone Gemischtganzzahlige Lineare Komplementaritätsprobleme und Gemischtganzzahlige Lineare Probleme, präsentiert die Arbeit
verschiedene problemspezifische Verbesserungsmöglichkeiten und evaluiert diese numerisch.
Weiterhin vergleicht die Arbeit die neue Methode mit verschiedenen Benchmark-Methoden
mit größtenteils guten Ergebnissen und gibt einen Ausblick auf weitere Anwendungsgebiete
und zu beantwortende Forschungsfragen.

Let K be a compact subset of the complex plane. Then the family of polynomials P is dense in A(K), the space of all continuous functions on K that are holomorphic on the interior of K, endowed with the uniform norm, if and only if the complement of K is connected. This is the statement of Mergelyan's celebrated theorem.
There are, however, situations where not all polynomials are required to approximate every f ϵ A(K) but where there are strict subspaces of P that are still dense in A(K). If, for example, K is a singleton, then the subspace of all constant polynomials is dense in A(K). On the other hand, if 0 is an interior point of K, then no strict subspace of P can be dense in A(K).
In between these extreme cases, the situation is much more complicated. It turns out that it is mostly determined by the geometry of K and its location in the complex plane which subspaces of P are dense in A(K). In Chapter 1, we give an overview of the known results.
Our first main theorem, which we will give in Chapter 3, deals with the case where the origin is not an interior point of K. We will show that if K is a compact set with connected complement and if 0 is not an interior point of K, then any subspace Q ⊂ P which contains the constant functions and all but finitely many monomials is dense in A(K).
There is a close connection between lacunary approximation and the theory of universality. At the end of Chapter 3, we will illustrate this connection by applying the above result to prove the existence of certain universal power series. To be specific, if K is a compact set with connected complement, if 0 is a boundary point of K and if A_0(K) denotes the subspace of A(K) of those functions that satisfy f(0) = 0, then there exists an A_0(K)-universal formal power series s, where A_0(K)-universal means that the family of partial sums of s forms a dense subset of A_0(K).
In addition, we will show that no formal power series is simultaneously universal for all such K.
The condition on the subspace Q in the main result of Chapter 3 is quite restrictive, but this should not be too surprising: The result applies to the largest possible class of compact sets.
In Chapter 4, we impose a further restriction on the compact sets under consideration, and this will allow us to weaken the condition on the subspace Q. The result that we are going to give is similar to one of those presented in the first chapter, namely the one due to Anderson. In his article “Müntz-Szasz type approximation and the angular growth of lacunary integral functions”, he gives a criterion for a subspace Q of P to be dense in A(K) where K is entirely contained in some closed sector with vertex at the origin.
We will consider compact sets with connected complement that are -- with the possible exception of the origin -- entirely contained in some open sector with vertex at the origin. What we are going to show is that if K\{0} is contained in an open sector of opening angle 2α and if Λ is some subset of the nonnegative integers, then the span of {z → z^λ : λ ϵ Λ} is dense in A(K) whenever 0 ϵ Λ and some Müntz-type condition is satisfied.
Conversely, we will show that if a similar condition is not satisfied, then we can always find a compact set K with connected complement such that K\{0} is contained in some open sector of opening angle 2α and such that the span of {z → z^λ : λ ϵ Λ} fails to be dense in A(K).

In common shape optimization routines, deformations of the computational mesh
usually suffer from decrease of mesh quality or even destruction of the mesh.
To mitigate this, we propose a theoretical framework using so-called pre-shape
spaces. This gives an opportunity for a unified theory of shape optimization, and of
problems related to parameterization and mesh quality. With this, we stay in the
free-form approach of shape optimization, in contrast to parameterized approaches
that limit possible shapes. The concept of pre-shape derivatives is defined, and
according structure and calculus theorems are derived, which generalize classical
shape optimization and its calculus. Tangential and normal directions are featured
in pre-shape derivatives, in contrast to classical shape derivatives featuring only
normal directions on shapes. Techniques from classical shape optimization and
calculus are shown to carry over to this framework, and are collected in generality
for future reference.
A pre-shape parameterization tracking problem class for mesh quality is in-
troduced, which is solvable by use of pre-shape derivatives. This class allows for
non-uniform user prescribed adaptations of the shape and hold-all domain meshes.
It acts as a regularizer for classical shape objectives. Existence of regularized solu-
tions is guaranteed, and corresponding optimal pre-shapes are shown to correspond
to optimal shapes of the original problem, which additionally achieve the user pre-
scribed parameterization.
We present shape gradient system modifications, which allow simultaneous nu-
merical shape optimization with mesh quality improvement. Further, consistency
of modified pre-shape gradient systems is established. The computational burden
of our approach is limited, since additional solution of possibly larger (non-)linear
systems for regularized shape gradients is not necessary. We implement and com-
pare these pre-shape gradient regularization approaches for a 2D problem, which
is prone to mesh degeneration. As our approach does not depend on the choice of
forms to represent shape gradients, we employ and compare weak linear elasticity
and weak quasilinear p-Laplacian pre-shape gradient representations.
We also introduce a Quasi-Newton-ADM inspired algorithm for mesh quality,
which guarantees sufficient adaption of meshes to user specification during the rou-
tines. It is applicable in addition to simultaneous mesh regularization techniques.
Unrelated to mesh regularization techniques, we consider shape optimization
problems constrained by elliptic variational inequalities of the first kind, so-called
obstacle-type problems. In general, standard necessary optimality conditions cannot
be formulated in a straightforward manner for such semi-smooth shape optimization
problems. Under appropriate assumptions, we prove existence and convergence of
adjoints for smooth regularizations of the VI-constraint. Moreover, we derive shape
derivatives for the regularized problem and prove convergence to a limit object.
Based on this analysis, an efficient optimization algorithm is devised and tested
numerically.
All previous pre-shape regularization techniques are applied to a variational
inequality constrained shape optimization problem, where we also create customized
targets for increased mesh adaptation of changing embedded shapes and active set
boundaries of the constraining variational inequality.

Hybrid Modelling in general, describes the combination of at least two different methods to solve one specific task. As far as this work is concerned, Hybrid Models describe an approach to combine sophisticated, well-studied mathematical methods with Deep Neural Networks to solve parameter estimation tasks. To combine these two methods, the data structure of artifi- cially generated acceleration data of an approximate vehicle model, the Quarter-Car-Model, is exploited. Acceleration of individual components within a coupled dynamical system, can be described as a second order ordinary differential equation, including velocity and dis- placement of coupled states, scaled by spring - and damping-coefficient of the system. An appropriate numerical integration scheme can then be used to simulate discrete acceleration profiles of the Quarter-Car-Model with a random variation of the parameters of the system. Given explicit knowledge about the data structure, one can then investigate under which con- ditions it is possible to estimate the parameters of the dynamical system for a set of randomly generated data samples. We test, if Neural Networks are capable to solve parameter estima- tion problems in general, or if they can be used to solve several sub-tasks, which support a state-of-the-art parameter estimation method. Hybrid Models are presented for parameter estimation under uncertainties, including for instance measurement noise or incompleteness of measurements, which combine knowledge about the data structure and several Neural Networks for robust parameter estimation within a dynamical system.

In order to classify smooth foliated manifolds, which are smooth maifolds equipped with a smooth foliation, we introduce the de Rham cohomologies of smooth foliated manifolds. These cohomologies are build in a similar way as the de Rham cohomologies of smooth manifolds. We develop some tools to compute these cohomologies. For example we proof a Mayer Vietoris theorem for foliated de Rham cohomology and show that these cohomologys are invariant under integrable homotopy. A generalization of a known Künneth formula, which relates the cohomologies of a product foliation with its factors, is discussed. In particular, this envolves a splitting theory of sequences between Frechet spaces and a theory of projective spectrums. We also prove, that the foliated de Rham cohomology is isomorphic to the Cech-de Rham cohomology and the Cech cohomology of leafwise constant functions of an underlying so called good cover.

This work studies typical mathematical challenges occurring in the modeling and simulation of manufacturing processes of paper or industrial textiles. In particular, we consider three topics: approximate models for the motion of small inertial particles in an incompressible Newtonian fluid, effective macroscopic approximations for a dilute particle suspension contained in a bounded domain accounting for a non-uniform particle distribution and particle inertia, and possibilities for a reduction of computational cost in the simulations of slender elastic fibers moving in a turbulent fluid flow.
We consider the full particle-fluid interface problem given in terms of the Navier-Stokes equations coupled to momentum equations of a small rigid body. By choosing an appropriate asymptotic scaling for the particle-fluid density ratio and using an asymptotic expansion for the solution components, we derive approximations of the original interface problem. The approximate systems differ according to the chosen scaling of the density ratio in their physical behavior allowing the characterization of different inertial regimes.
We extend the asymptotic approach to the case of many particles suspended in a Newtonian fluid. Under specific assumptions for the combination of particle size and particle number, we derive asymptotic approximations of this system. The approximate systems describe the particle motion which allows to use a mean field approach in order to formulate the continuity equation for the particle probability density function. The coupling of the latter with the approximation for the fluid momentum equation then reveals a macroscopic suspension description which accounts for non-uniform particle distributions in space and for small particle inertia.
A slender fiber in a turbulent air flow can be modeled as a stochastic inextensible one-dimensionally parametrized Kirchhoff beam, i.e., by a stochastic partial differential algebraic equation. Its simulations involve the solution of large non-linear systems of equations by Newton's method. In order to decrease the computational time, we explore different methods for the estimation of the solution. Additionally, we apply smoothing techniques to the Wiener Process in order to regularize the stochastic force driving the fiber, exploring their respective impact on the solution and performance. We also explore the applicability of the Wiener chaos expansion as a solution technique for the simulation of the fiber dynamics.

This thesis addresses three different topics from the fields of mathematical finance, applied probability and stochastic optimal control. Correspondingly, it is subdivided into three independent main chapters each of which approaches a mathematical problem with a suitable notion of a stochastic particle system.
In Chapter 1, we extend the branching diffusion Monte Carlo method of Henry-Labordère et. al. (2019) to the case of parabolic PDEs with mixed local-nonlocal analytic nonlinearities. We investigate branching diffusion representations of classical solutions, and we provide sufficient conditions under which the branching diffusion representation solves the PDE in the viscosity sense. Our theoretical setup directly leads to a Monte Carlo algorithm, whose applicability is showcased in two stylized high-dimensional examples. As our main application, we demonstrate how our methodology can be used to value financial positions with defaultable, systemically important counterparties.
In Chapter 2, we formulate and analyze a mathematical framework for continuous-time mean field games with finitely many states and common noise, including a rigorous probabilistic construction of the state process. The key insight is that we can circumvent the master equation and reduce the mean field equilibrium to a system of forward-backward systems of (random) ordinary differential equations by conditioning on common noise events. We state and prove a corresponding existence theorem, and we illustrate our results in three stylized application examples. In the absence of common noise, our setup reduces to that of Gomes, Mohr and Souza (2013) and Cecchin and Fischer (2020).
In Chapter 3, we present a heuristic approach to tackle stochastic impulse control problems in discrete time. Based on the work of Bensoussan (2008) we reformulate the classical Bellman equation of stochastic optimal control in terms of a discrete-time QVI, and we prove a corresponding verification theorem. Taking the resulting optimal impulse control as a starting point, we devise a self-learning algorithm that estimates the continuation and intervention region of such a problem. Its key features are that it explores the state space of the underlying problem by itself and successively learns the behavior of the optimally controlled state process. For illustration, we apply our algorithm to a classical example problem, and we give an outlook on open questions to be addressed in future research.

Traditionell werden Zufallsstichprobenerhebungen so geplant, dass nationale Statistiken zuverlässig mit einer adäquaten Präzision geschätzt werden können. Hierbei kommen vorrangig designbasierte, Modell-unterstützte (engl. model assisted) Schätzmethoden zur Anwendung, die überwiegend auf asymptotischen Eigenschaften beruhen. Für kleinere Stichprobenumfänge, wie man sie für Small Areas (Domains bzw. Subpopulationen) antrifft, eignen sich diese Schätzmethoden eher nicht, weswegen für diese Anwendung spezielle modellbasierte Small Area-Schätzverfahren entwickelt wurden. Letztere können zwar Verzerrungen aufweisen, besitzen jedoch häufig einen kleineren mittleren quadratischen Fehler der Schätzung als dies für designbasierte Schätzer der Fall ist. Den Modell-unterstützten und modellbasierten Methoden ist gemeinsam, dass sie auf statistischen Modellen beruhen; allerdings in unterschiedlichem Ausmass. Modell-unterstützte Verfahren sind in der Regel so konstruiert, dass der Beitrag des Modells bei sehr grossen Stichprobenumfängen gering ist (bei einer Grenzwertbetrachtung sogar wegfällt). Bei modellbasierten Methoden nimmt das Modell immer eine tragende Rolle ein, unabhängig vom Stichprobenumfang. Diese Überlegungen veranschaulichen, dass das unterstellte Modell, präziser formuliert, die Güte der Modellierung für die Qualität der Small Area-Statistik von massgeblicher Bedeutung ist. Wenn es nicht gelingt, die empirischen Daten durch ein passendes Modell zu beschreiben und mit den entsprechenden Methoden zu schätzen, dann können massive Verzerrungen und / oder ineffiziente Schätzungen resultieren.
Die vorliegende Arbeit beschäftigt sich mit der zentralen Frage der Robustheit von Small Area-Schätzverfahren. Als robust werden statistische Methoden dann bezeichnet, wenn sie eine beschränkte Einflussfunktion und einen möglichst hohen Bruchpunkt haben. Vereinfacht gesprochen zeichnen sich robuste Verfahren dadurch aus, dass sie nur unwesentlich durch Ausreisser und andere Anomalien in den Daten beeinflusst werden. Die Untersuchung zur Robustheit konzentriert sich auf die folgenden Modelle bzw. Schätzmethoden:
i) modellbasierte Schätzer für das Fay-Herriot-Modell (Fay und Herrot, 1979, J. Amer. Statist. Assoc.) und das elementare Unit-Level-Modell (vgl. Battese et al., 1988, J. Amer. Statist. Assoc.).
ii) direkte, Modell-unterstützte Schätzer unter der Annahme eines linearen Regressionsmodells.
Das Unit-Level-Modell zur Mittelwertschätzung beruht auf einem linearen gemischten Gauss'schen Modell (engl. mixed linear model, MLM) mit blockdiagonaler Kovarianzmatrix. Im Gegensatz zu bspw. einem multiplen linearen Regressionsmodell, besitzen MLM-Modelle keine nennenswerten Invarianzeigenschaften, so dass eine Kontamination der abhängigen Variablen unvermeidbar zu verzerrten Parameterschätzungen führt. Für die Maximum-Likelihood-Methode kann die resultierende Verzerrung nahezu beliebig groß werden. Aus diesem Grund haben Richardson und Welsh (1995, Biometrics) die robusten Schätzmethoden RML 1 und RML 2 entwickelt, die bei kontaminierten Daten nur eine geringe Verzerrung aufweisen und wesentlich effizienter sind als die Maximum-Likelihood-Methode. Eine Abwandlung von Methode RML 2 wurde Sinha und Rao (2009, Canad. J. Statist.) für die robuste Schätzung von Unit-Level-Modellen vorgeschlagen. Allerdings erweisen sich die gebräuchlichen numerischen Verfahren zur Berechnung der RML-2-Methode (dies gilt auch für den Vorschlag von Sinha und Rao) als notorisch unzuverlässig. In dieser Arbeit werden zuerst die Konvergenzprobleme der bestehenden Verfahren erörtert und anschließend ein numerisches Verfahren vorgeschlagen, das sich durch wesentlich bessere numerische Eigenschaften auszeichnet. Schließlich wird das vorgeschlagene Schätzverfahren im Rahmen einer Simulationsstudie untersucht und anhand eines empirischen Beispiels zur Schätzung von oberirdischer Biomasse in norwegischen Kommunen illustriert.
Das Modell von Fay-Herriot kann als Spezialfall eines MLM mit blockdiagonaler Kovarianzmatrix aufgefasst werden, obwohl die Varianzen des Zufallseffekts für die Small Areas nicht geschätzt werden müssen, sondern als bereits bekannte Größen betrachtet werden. Diese Eigenschaft kann man sich nun zunutze machen, um die von Sinha und Rao (2009) vorgeschlagene Robustifizierung des Unit-Level-Modells direkt auf das Fay-Herriot Model zu übertragen. In der vorliegenden Arbeit wird jedoch ein alternativer Vorschlag erarbeitet, der von der folgenden Beobachtung ausgeht: Fay und Herriot (1979) haben ihr Modell als Verallgemeinerung des James-Stein-Schätzers motiviert, wobei sie sich einen empirischen Bayes-Ansatz zunutze machen. Wir greifen diese Motivation des Problems auf und formulieren ein analoges robustes Bayes'sches Verfahren. Wählt man nun in der robusten Bayes'schen Problemformulierung die ungünstigste Verteilung (engl. least favorable distribution) von Huber (1964, Ann. Math. Statist.) als A-priori-Verteilung für die Lokationswerte der Small Areas, dann resultiert als Bayes-Schätzer [=Schätzer mit dem kleinsten Bayes-Risk] die Limited-Translation-Rule (LTR) von Efron und Morris (1971, J. Amer. Statist. Assoc.). Im Kontext der frequentistischen Statistik kann die Limited-Translation-Rule nicht verwendet werden, weil sie (als Bayes-Schätzer) auf unbekannten Parametern beruht. Die unbekannten Parameter können jedoch nach dem empirischen Bayes-Ansatz an der Randverteilung der abhängigen Variablen geschätzt werden. Hierbei gilt es zu beachten (und dies wurde in der Literatur vernachlässigt), dass die Randverteilung unter der ungünstigsten A-priori-Verteilung nicht einer Normalverteilung entspricht, sondern durch die ungünstigste Verteilung nach Huber (1964) beschrieben wird. Es ist nun nicht weiter erstaunlich, dass es sich bei den Maximum-Likelihood-Schätzern von Regressionskoeffizienten und Modellvarianz unter der Randverteilung um M-Schätzer mit der Huber'schen psi-Funktion handelt.
Unsere theoriegeleitete Herleitung von robusten Schätzern zum Fay-Herriot-Modell zeigt auf, dass bei kontaminierten Daten die geschätzte LTR (mit Parameterschätzungen nach der M-Schätzmethodik) optimal ist und, dass die LTR ein integraler Bestandteil der Schätzmethodik ist (und nicht als ``Zusatz'' o.Ä. zu betrachten ist, wie dies andernorts getan wird). Die vorgeschlagenen M-Schätzer sind robust bei Vorliegen von atypischen Small Areas (Ausreissern), wie dies auch die Simulations- und Fallstudien zeigen. Um auch Robustheit bei Vorkommen von einflussreichen Beobachtungen in den unabhängigen Variablen zu erzielen, wurden verallgemeinerte M-Schätzer (engl. generalized M-estimator) für das Fay-Herriot-Modell entwickelt.

Many NP-hard optimization problems that originate from classical graph theory, such as the maximum stable set problem and the maximum clique problem, have been extensively studied over the past decades and involve the choice of a subset of edges or vertices. There usually exist combinatorial methods that can be applied to solve them directly in the graph.
The most simple method is to enumerate feasible solutions and select the best. It is not surprising that this method is very slow oftentimes, so the task is to cleverly discard fruitless search space during the search. An alternative method to solve graph problems is to formulate integer linear programs, such that their solution yields an optimal solution to the original optimization problem in the graph. In order to solve integer linear programs, one can start with relaxing the integer constraints and then try to find inequalities for cutting off fractional extreme points. In the best case, it would be possible to describe the convex hull of the feasible region of the integer linear program with a set of inequalities. In general, giving a complete description of this convex hull is out of reach, even if it has a polynomial number of facets. Thus, one tries to strengthen the (weak) relaxation of the integer linear program best possible via strong inequalities that are valid for the convex hull of feasible integer points.
Many classes of valid inequalities are of exponential size. For instance, a graph can have exponentially many odd cycles in general and therefore the number of odd cycle inequalities for the maximum stable set problem is exponential. It is sometimes possible to check in polynomial time if some given point violates any of the exponentially many inequalities. This is indeed the case for the odd cycle inequalities for the maximum stable set problem. If a polynomial time separation algorithm is known, there exists a formulation of polynomial size that contains a given point if and only if it does not violate one of the (potentially exponentially many) inequalities. This thesis can be divided into two parts. The first part is the main part and it contains various new results. We present new extended formulations for several optimization problems, i.e. the maximum stable set problem, the nonconvex quadratic program with box
constraints and the p-median problem. In the second part we modify a very fast algorithm for finding a maximum clique in very large sparse graphs. We suggest and compare three alternative versions of this algorithm to the original version and compare their strengths and weaknesses.

Data used for the purpose of machine learning are often erroneous. In this thesis, p-quasinorms (p<1) are employed as loss functions in order to increase the robustness of training algorithms for artificial neural networks. Numerical issues arising from these loss functions are addressed via enhanced optimization algorithms (proximal point methods; Frank-Wolfe methods) based on the (non-monotonic) Armijo-rule. Numerical experiments comprising 1100 test problems confirm the effectiveness of the approach. Depending on the parametrization, an average reduction of the absolute residuals of up to 64.6% is achieved (aggregated over 100 test problems).

Nonlocal operators are used in a wide variety of models and applications due to many natural phenomena being driven by nonlocal dynamics. Nonlocal operators are integral operators allowing for interactions between two distinct points in space. The nonlocal models investigated in this thesis involve kernels that are assumed to have a finite range of nonlocal interactions. Kernels of this type are used in nonlocal elasticity and convection-diffusion models as well as finance and image analysis. Also within the mathematical theory they arouse great interest, as they are asymptotically related to fractional and classical differential equations.
The results in this thesis can be grouped according to the following three aspects: modeling and analysis, discretization and optimization.
Mathematical models demonstrate their true usefulness when put into numerical practice. For computational purposes, it is important that the support of the kernel is clearly determined. Therefore nonlocal interactions are typically assumed to occur within an Euclidean ball of finite radius. In this thesis we consider more general interaction sets including norm induced balls as special cases and extend established results about well-posedness and asymptotic limits.
The discretization of integral equations is a challenging endeavor. Especially kernels which are truncated by Euclidean balls require carefully designed quadrature rules for the implementation of efficient finite element codes. In this thesis we investigate the computational benefits of polyhedral interaction sets as well as geometrically approximated interaction sets. In addition to that we outline the computational advantages of sufficiently structured problem settings.
Shape optimization methods have been proven useful for identifying interfaces in models governed by partial differential equations. Here we consider a class of shape optimization problems constrained by nonlocal equations which involve interface-dependent kernels. We derive the shape derivative associated to the nonlocal system model and solve the problem by established numerical techniques.

We consider a linear regression model for which we assume that some of the observed variables are irrelevant for the prediction. Including the wrong variables in the statistical model can either lead to the problem of having too little information to properly estimate the statistic of interest, or having too much information and consequently describing fictitious connections. This thesis considers discrete optimization to conduct a variable selection. In light of this, the subset selection regression method is analyzed. The approach gained a lot of interest in recent years due to its promising predictive performance. A major challenge associated with the subset selection regression is the computational difficulty. In this thesis, we propose several improvements for the efficiency of the method. Novel bounds on the coefficients of the subset selection regression are developed, which help to tighten the relaxation of the associated mixed-integer program, which relies on a Big-M formulation. Moreover, a novel mixed-integer linear formulation for the subset selection regression based on a bilevel optimization reformulation is proposed. Finally, it is shown that the perspective formulation of the subset selection regression is equivalent to a state-of-the-art binary formulation. We use this insight to develop novel bounds for the subset selection regression problem, which show to be highly effective in combination with the proposed linear formulation.
In the second part of this thesis, we examine the statistical conception of the subset selection regression and conclude that it is misaligned with its intention. The subset selection regression uses the training error to decide on which variables to select. The approach conducts the validation on the training data, which oftentimes is not a good estimate of the prediction error. Hence, it requires a predetermined cardinality bound. Instead, we propose to select variables with respect to the cross-validation value. The process is formulated as a mixed-integer program with the sparsity becoming subject of the optimization. Usually, a cross-validation is used to select the best model out of a few options. With the proposed program the best model out of all possible models is selected. Since the cross-validation is a much better estimate of the prediction error, the model can select the best sparsity itself.
The thesis is concluded with an extensive simulation study which provides evidence that discrete optimization can be used to produce highly valuable predictive models with the cross-validation subset selection regression almost always producing the best results.

In this thesis, we consider the solution of high-dimensional optimization problems with an underlying low-rank tensor structure. Due to the exponentially increasing computational complexity in the number of dimensions—the so-called curse of dimensionality—they present a considerable computational challenge and become infeasible even for moderate problem sizes.
Multilinear algebra and tensor numerical methods have a wide range of applications in the fields of data science and scientific computing. Due to the typically large problem sizes in practical settings, efficient methods, which exploit low-rank structures, are essential. In this thesis, we consider an application each in both of these fields.
Tensor completion, or imputation of unknown values in partially known multiway data is an important problem, which appears in statistics, mathematical imaging science and data science. Under the assumption of redundancy in the underlying data, this is a well-defined problem and methods of mathematical optimization can be applied to it.
Due to the fact that tensors of fixed rank form a Riemannian submanifold of the ambient high-dimensional tensor space, Riemannian optimization is a natural framework for these problems, which is both mathematically rigorous and computationally efficient.
We present a novel Riemannian trust-region scheme, which compares favourably with the state of the art on selected application cases and outperforms known methods on some test problems.
Optimization problems governed by partial differential equations form an area of scientific computing which has applications in a variety of areas, ranging from physics to financial mathematics. Due to the inherent high dimensionality of optimization problems arising from discretized differential equations, these problems present computational challenges, especially in the case of three or more dimensions. An even more challenging class of optimization problems has operators of integral instead of differential type in the constraint. These operators are nonlocal, and therefore lead to large, dense discrete systems of equations. We present a novel solution method, based on separation of spatial dimensions and provably low-rank approximation of the nonlocal operator. Our approach allows the solution of multidimensional problems with a complexity which is only slightly larger than linear in the univariate grid size; this improves the state of the art for a particular test problem problem by at least two orders of magnitude.

Many combinatorial optimization problems on finite graphs can be formulated as conic convex programs, e.g. the stable set problem, the maximum clique problem or the maximum cut problem. Especially NP-hard problems can be written as copositive programs. In this case the complexity is moved entirely into the copositivity constraint.
Copositive programming is a quite new topic in optimization. It deals with optimization over the so-called copositive cone, a superset of the positive semidefinite cone, where the quadratic form x^T Ax has to be nonnegative for only the nonnegative vectors x. Its dual cone is the cone of completely positive matrices, which includes all matrices that can be decomposed as a sum of nonnegative symmetric vector-vector-products.
The related optimization problems are linear programs with matrix variables and cone constraints.
However, some optimization problems can be formulated as combinatorial problems on infinite graphs. For example, the kissing number problem can be formulated as a stable set problem on a circle.
In this thesis we will discuss how the theory of copositive optimization can be lifted up to infinite dimension. For some special cases we will give applications in combinatorial optimization.

The economic growth theory analyses which factors affect economic growth and tries to analyze how it can last. A popular neoclassical growth model is the Ramsey-Cass-Koopmans model, which aims to determine how much of its income a nation or an economy should save in order to maximize its welfare. In this thesis, we present and analyze an extended capital accumulation equation of a spatial version of the Ramsey model, balancing diffusive and agglomerative effects. We model the capital mobility in space via a nonlocal diffusion operator which allows for jumps of the capital stock from one location to an other. Moreover, this operator smooths out heterogeneities in the factor distributions slower, which generated a more realistic behavior of capital flows. In addition to that, we introduce an endogenous productivity-production operator which depends on time and on the capital distribution in space. This operator models the technological progress of the economy. The resulting mathematical model is an optimal control problem under a semilinear parabolic integro-differential equation with initial and volume constraints, which are a nonlocal analog to local boundary conditions, and box-constraints on the state and the control variables. In this thesis, we consider this problem on a bounded and unbounded spatial domain, in both cases with a finite time horizon. We derive existence results of weak solutions for the capital accumulation equations in both settings and we proof the existence of a Ramsey equilibrium in the unbounded case. Moreover, we solve the optimal control problem numerically and discuss the results in the economic context.