• search hit 13 of 845
Back to Result List

Konvergenz des Proximal-Punkt-Verfahrens für inkorrekt gestellte Optimalsteuerprobleme mit partiellen Differentialgleichungen

  • Das Konzept der proximalen Mehrschritt-Regularisierung (MSR) auf Folgen von Gittern bei der Lösung inkorrekter Variationsungleichungen wurde von Kaplan und Tichatschke im Jahre 1997 in ihrer Arbeit "Prox-regularization and solution of illposed elliptic variational inequalities" vorgeschlagen und theoretisch motiviert. In demselben Artikel betrachtet man ein allgemeines Problem der partiellen Regularisierung auf einem abgeschlossenen Unterraum. Als Gegenstand der Anwendung solcher Regularisierung können die schlecht gestellten Optimalsteuerprobleme heraustreten, wobei der Unterraum in dem ganzen Prozessraum durch Steuervariablen gebildet wird. Im ersten Kapitel der vorliegenden Dissertation betrachten wir ein abstraktes linear-quadratisches Kontrollproblem in allgemeinen Hilberträumen. Wir diskutieren Voraussetzungen und Bedingungen, unter denen das Kontrollproblem inkorrekt wird. Danach werden zwei allgemeine numerische Verfahren der partiellen Mehrschritt-Regularisierung formuliert. Im ersten Fall untersucht man das MSR-Verfahren, in dem die Zustandsgleichung in einen quadratischen Strafterm eingebettet wird, gemäß der entsprechenden Publikationen von Kaplan und Tichatschke. Im zweiten Fall werden die Ersatzprobleme des MSR-Verfahrens mit exakt erfüllter Zustandsgleichung entwickelt. Im Mittelpunkt sämtlicher Forschungen steht die Konvergenz der approximativen Lösungen von Ersatzproblemen des MSR-Verfahrens gegen ein Element aus der Optimalmenge des Ausgangsproblems. Es stellt sich die Frage: in welchem der genannten Fälle können schwächeren Konvergenzbedingungen für die inneren Approximationen angegeben werden? Um diese Frage aufzuklären, untersuchen wir zwei inkorrekten Kontrollproblme mit elliptischen Zustandsgleichungen und verteilter Steuerung. Das erste Problem kann auf das bekannte Fuller-Problem zurückgeführt werden, für welches eine analytische Lösung mit sogenanntem "chattering regime" existiert und welches ein Basisbeispiel für unsere Aufgaben liefert. Zur Lösung des Fuller-Problems formulieren wir einen MSR-Algorithmus, in dem man mit Fehlern des Strafverfahrens und der FEM-Approximationen rechnen muß. Als Hauptergebnis erhalten wir ein Konvergenzkriterium, das das asymptotische Verhalten von Regularisierungs-, Diskretisierungs- und Strafparametern des MSR-Algorithmus bestimmt. Im letzten Kapitel formulieren wir ein anderes schlecht gestelltes Optimalsteuerproblem mit verteilter Steuerung über dem Polygongebiet. Die Zustandsgleichung wird nun durch ein Poisson-Problem mit gemischten Randbedingungen erzeugt. Solche Aufgabenstellung liefert eine natürliche Erweiterung des auf einer gewöhnlichen Differentialgeichung beruhenden Fuller-Problems auf die Kontrollprobleme mit partiellen Differentialgleichungen. Wir formulieren neuerlich das MSR-Verfahren, in dem man neben dem Diskretisierungsfehler auch einen Berechnungsfehler berücksichtigt. Diesmal verzichten wir aber auf die Straftechniken und stellen die Ersatzprobleme mit exakt erfüllter Zustandsgleichung zusammen. Mit diesem alternativen Zugang und anhand der Falkschen Beweistechniken erhalten wir ein schwächeres und somit auch besseres Konvergenzkriterium für das MSR-Verfahren. Zum Abschluß präsentieren wir Ergebnisse der numerischen Tests, durchgeführt mit dem MSR-Verfahren für ein konkretes Optimalsteuerproblem, dessen Lösung ein zweidimensionales chattering regime aufweist.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sergej Rotin
URN:urn:nbn:de:hbz:385-2118
DOI:https://doi.org/10.25353/ubtr-xxxx-901d-57ad
Document Type:Doctoral Thesis
Language:German
Date of completion:2004/06/15
Publishing institution:Universität Trier
Granting institution:Universität Trier, Fachbereich 4
Date of final exam:1999/06/04
Release Date:2004/06/15
GND Keyword:Inkorrekt gestelltes Problem; Optimale Kontrolle; Partielle Differentialgleichung; Regularisierung
Institutes:Fachbereich 4 / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik

$Rev: 13581 $