## 510 Mathematik

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (59)
- Habilitation (2)

#### Keywords

- Optimierung (7)
- Approximationstheorie (6)
- Funktionentheorie (6)
- Partielle Differentialgleichung (6)
- Universalität (6)
- Approximation (5)
- Funktionalanalysis (5)
- universal functions (5)
- Numerische Strömungssimulation (4)
- Optimale Kontrolle (4)

#### Institute

- Mathematik (60)
- Fachbereich 4 (1)

Optimal Control of Partial Integro-Differential Equations and Analysis of the Gaussian Kernel
(2018)

An important field of applied mathematics is the simulation of complex financial, mechanical, chemical, physical or medical processes with mathematical models. In addition to the pure modeling of the processes, the simultaneous optimization of an objective function by changing the model parameters is often the actual goal. Models in fields such as finance, biology or medicine benefit from this optimization step.
While many processes can be modeled using an ordinary differential equation (ODE), partial differential equations (PDEs) are needed to optimize heat conduction and flow characteristics, spreading of tumor cells in tissue as well as option prices. A partial integro-differential equation (PIDE) is a parital differential equation involving an integral operator, e.g., the convolution of the unknown function with a given kernel function. PIDEs occur for example in models that simulate adhesive forces between cells or option prices with jumps.
In each of the two parts of this thesis, a certain PIDE is the main object of interest. In the first part, we study a semilinear PIDE-constrained optimal control problem with the aim to derive necessary optimality conditions. In the second, we analyze a linear PIDE that includes the convolution of the unknown function with the Gaussian kernel.

The economic growth theory analyses which factors affect economic growth
and tries to analyze how it can last. A popular neoclassical growth model
is the Ramsey-Cass-Koopmans model, which aims to determine how much
of its income a nation or an economy should save in order to maximize its
welfare.
In this thesis, we present and analyze an extended capital accumulation equation of a spatial version of the Ramsey model, balancing diffusive and agglomerative effects. We model the capital mobility in space via a nonlocal
diffusion operator which allows for jumps of the capital stock from one lo-
cation to an other. Moreover, this operator smooths out heterogeneities in
the factor distributions slower, which generated a more realistic behavior of
capital flows. In addition to that, we introduce an endogenous productivity-
production operator which depends on time and on the capital distribution
in space. This operator models the technological progress of the economy.
The resulting mathematical model is an optimal control problem under a
semilinear parabolic integro-differential equation with initial and volume constraints, which are a nonlocal analog to local boundary conditions, and box-constraints on the state and the control variables. In this thesis, we consider
this problem on a bounded and unbounded spatial domain, in both cases with
a finite time horizon. We derive existence results of weak solutions for the
capital accumulation equations in both settings and we proof the existence
of a Ramsey equilibrium in the unbounded case. Moreover, we solve the
optimal control problem numerically and discuss the results in the economic
context.

A matrix A is called completely positive if there exists an entrywise nonnegative matrix B such that A = BB^T. These matrices can be used to obtain convex reformulations of for example nonconvex quadratic or combinatorial problems. One of the main problems with completely positive matrices is checking whether a given matrix is completely positive. This is known to be NP-hard in general. rnrnFor a given matrix completely positive matrix A, it is nontrivial to find a cp-factorization A=BB^T with nonnegative B since this factorization would provide a certificate for the matrix to be completely positive. But this factorization is not only important for the membership to the completely positive cone, it can also be used to recover the solution of the underlying quadratic or combinatorial problem.rnrnIn addition, it is not a priori known how many columns are necessary to generate a cp-factorization for the given matrix. The minimal possible number of columns is called the cp-rank of A and so far it is still an open question how to derive the cp-rank for a given matrix. Some facts on completely positive matrices and the cp-rank will be given in Chapter 2.rnrnMoreover, in Chapter 6, we will see a factorization algorithm, which, for a given completely positive matrix A and a suitable starting point, computes the nonnegative factorization A=BB^T. The algorithm therefore returns a certificate for the matrix to be completely positive. As introduced in Chapter 3, the fundamental idea of the factorization algorithm is to start from an initial square factorization which is not necessarily entrywise nonnegative, and extend this factorization to a matrix for which the number of columns is greater than or equal to the cp-rank of A. Then it is the goal to transform this generated factorization into a cp-factorization.rnrnThis problem can be formulated as a nonconvex feasibility problem, as shown in Section 4.1, and solved by a method which is based on alternating projections, as proven in Chapter 6.rnrnOn the topic of alternating projections, a survey will be given in Chapter 5. Here we will see how to apply this technique to several types of sets like subspaces, convex sets, manifolds and semialgebraic sets. Furthermore, we will see some known facts on the convergence rate for alternating projections between these types of sets. Considering more than two sets yields the so called cyclic projections approach. Here some known facts for subspaces and convex sets will be shown. Moreover, we will see a new convergence result on cyclic projections among a sequence of manifolds in Section 5.4.rnrnIn the context of cp-factorizations, a local convergence result for the introduced algorithm will be given. This result is based on the known convergence for alternating projections between semialgebraic sets.rnrnTo obtain cp-facrorizations with this first method, it is necessary to solve a second order cone problem in every projection step, which is very costly. Therefore, in Section 6.2, we will see an additional heuristic extension, which improves the numerical performance of the algorithm. Extensive numerical tests in Chapter 7 will show that the factorization method is very fast in most instances. In addition, we will see how to derive a certificate for the matrix to be an element of the interior of the completely positive cone.rnrnAs a further application, this method can be extended to find a symmetric nonnegative matrix factorization, where we consider an additional low-rank constraint. Here again, the method to derive factorizations for completely positive matrices can be used, albeit with some further adjustments, introduced in Section 8.1. Moreover, we will see that even for the general case of deriving a nonnegative matrix factorization for a given rectangular matrix A, the key aspects of the completely positive factorization approach can be used. To this end, it becomes necessary to extend the idea of finding a completely positive factorization such that it can be used for rectangular matrices. This yields an applicable algorithm for nonnegative matrix factorization in Section 8.2.rnNumerical results for this approach will suggest that the presented algorithms and techniques to obtain completely positive matrix factorizations can be extended to general nonnegative factorization problems.

We will consider discrete dynamical systems (X,T) which consist of a state space X and a linear operator T acting on X. Given a state x in X at time zero, its state at time n is determined by the n-th iteration T^n(x). We are interested in the long-term behaviour of this system, that means we want to know how the sequence (T^n (x))_(n in N) behaves for increasing n and x in X. In the first chapter, we will sum up the relevant definitions and results of linear dynamics. In particular, in topological dynamics the notions of hypercyclic, frequently hypercyclic and mixing operators will be presented. In the setting of measurable dynamics, the most important definitions will be those of weakly and strongly mixing operators. If U is an open set in the (extended) complex plane containing 0, we can define the Taylor shift operator on the space H(U) of functions f holomorphic in U as Tf(z) = (f(z)- f(0))/z if z is not equal to 0 and otherwise Tf(0) = f'(0). In the second chapter, we will start examining the Taylor shift on H(U) endowed with the topology of locally uniform convergence. Depending on the choice of U, we will study whether or not the Taylor shift is weakly or strongly mixing in the Gaussian sense. Next, we will consider Banach spaces of functions holomorphic on the unit disc D. The first section of this chapter will sum up the basic properties of Bergman and Hardy spaces in order to analyse the dynamical behaviour of the Taylor shift on these Banach spaces in the next part. In the third section, we study the space of Cauchy transforms of complex Borel measures on the unit circle first endowed with the quotient norm of the total variation and then with a weak-* topology. While the Taylor shift is not even hypercyclic in the first case, we show that it is mixing for the latter case. In Chapter 4, we will first introduce Bergman spaces A^p(U) for general open sets and provide approximation results which will be needed in the next chapter where we examine the Taylor shift on these spaces on its dynamical properties. In particular, for 1<=p<2 we will find sufficient conditions for the Taylor shift to be weakly mixing or strongly mixing in the Gaussian sense. For p>=2, we consider specific Cauchy transforms in order to determine open sets U such that the Taylor shift is mixing on A^p(U). In both sections, we will illustrate the results with appropriate examples. Finally, we apply our results to universal Taylor series. The results of Chapter 5 about the Taylor shift allow us to consider the behaviour of the partial sums of the Taylor expansion of functions in general Bergman spaces outside its disc of convergence.

Given a compact set K in R^d, the theory of extension operators examines the question, under which conditions on K, the linear and continuous restriction operators r_n:E^n(R^d)→E^n(K),f↦(∂^α f|_K)_{|α|≤n}, n in N_0 and r:E(R^d)→E(K),f↦(∂^α f|_K)_{α in N_0^d}, have a linear and continuous right inverse. This inverse is called extension operator and this problem is known as Whitney's extension problem, named after Hassler Whitney. In this context, E^n(K) respectively E(K) denote spaces of Whitney jets of order n respectively of infinite order. With E^n(R^d) and E(R^d), we denote the spaces of n-times respectively infinitely often continuously partially differentiable functions on R^d. Whitney already solved the question for finite order completely. He showed that it is always possible to construct a linear and continuous right inverse E_n for r_n. This work is concerned with the question of how the existence of a linear and continuous right inverse of r, fulfilling certain continuity estimates, can be characterized by properties of K. On E(K), we introduce a full real scale of generalized Whitney seminorms (|·|_{s,K})_{s≥0}, where |·|_{s,K} coincides with the classical Whitney seminorms for s in N_0. We equip also E(R^d) with a family (|·|_{s,L})_{s≥0} of those seminorms, where L shall be a a compact set with K in L-°. This family of seminorms on E(R^d) suffices to characterize the continuity properties of an extension operator E, since we can without loss of generality assume that E(E(K)) in D^s(L).
In Chapter 2, we introduce basic concepts and summarize the classical results of Whitney and Stein.
In Chapter 3, we modify the classical construction of Whitney's operators E_n and show that |E_n(·)|_{s,L}≤C|·|_{s,K} for s in[n,n+1).
In Chapter 4, we generalize a result of Frerick, Jordá and Wengenroth and show that LMI(1) for K implies the existence of an extension operator E without loss of derivatives, i.e. we have it fulfils |E(·)|_{s,L}≤C|·|_{s,K} for all s≥0. We show that a large class of self similar sets, which includes the Cantor set and the Sierpinski triangle, admits an extensions operator without loss of derivatives.
In Chapter 5 we generalize a result of Frerick, Jordá and Wengenroth and show that WLMI(r) for r≥1 implies the existence of a tame linear extension operator E having a homogeneous loss of derivatives, such that |E(·)|_{s,L}≤C|·|_{(r+ε)s,K} for all s≥0 and all ε>0.
In the last chapter we characterize the existence of an extension operator having an arbitrary loss of derivatives by the existence of measures on K.

Industrial companies mainly aim for increasing their profit. That is why they intend to reduce production costs without sacrificing the quality. Furthermore, in the context of the 2020 energy targets, energy efficiency plays a crucial role. Mathematical modeling, simulation and optimization tools can contribute to the achievement of these industrial and environmental goals. For the process of white wine fermentation, there exists a huge potential for saving energy. In this thesis mathematical modeling, simulation and optimization tools are customized to the needs of this biochemical process and applied to it. Two different models are derived that represent the process as it can be observed in real experiments. One model takes the growth, division and death behavior of the single yeast cell into account. This is modeled by a partial integro-differential equation and additional multiple ordinary integro-differential equations showing the development of the other substrates involved. The other model, described by ordinary differential equations, represents the growth and death behavior of the yeast concentration and development of the other substrates involved. The more detailed model is investigated analytically and numerically. Thereby existence and uniqueness of solutions are studied and the process is simulated. These investigations initiate a discussion regarding the value of the additional benefit of this model compared to the simpler one. For optimization, the process is described by the less detailed model. The process is identified by a parameter and state estimation problem. The energy and quality targets are formulated in the objective function of an optimal control or model predictive control problem controlling the fermentation temperature. This means that cooling during the process of wine fermentation is controlled. Parameter and state estimation with nonlinear economic model predictive control is applied in two experiments. For the first experiment, the optimization problems are solved by multiple shooting with a backward differentiation formula method for the discretization of the problem and a sequential quadratic programming method with a line search strategy and a Broyden-Fletcher-Goldfarb-Shanno update for the solution of the constrained nonlinear optimization problems. Different rounding strategies are applied to the resulting post-fermentation control profile. Furthermore, a quality assurance test is performed. The outcomes of this experiment are remarkable energy savings and tasty wine. For the next experiment, some modifications are made, and the optimization problems are solved by using direct transcription via orthogonal collocation on finite elements for the discretization and an interior-point filter line-search method for the solution of the constrained nonlinear optimization problems. The second experiment verifies the results of the first experiment. This means that by the use of this novel control strategy energy conservation is ensured and production costs are reduced. From now on tasty white wine can be produced at a lower price and with a clearer conscience at the same time.

This thesis is divided into three main parts: The description of the calibration problem, the numerical solution of this problem and the connection to optimal stochastic control problems. Fitting model prices to given market prices leads to an abstract least squares formulation as calibration problem. The corresponding option price can be computed by solving a stochastic differential equation via the Monte-Carlo method which seems to be preferred by most practitioners. Due to the fact that the Monte-Carlo method is expensive in terms of computational effort and requires memory, more sophisticated stochastic predictor-corrector schemes are established in this thesis. The numerical advantage of these predictor-corrector schemes ispresented and discussed. The adjoint method is applied to the calibration. The theoretical advantage of the adjoint method is discussed in detail. It is shown that the computational effort of gradient calculation via the adjoint method is independent of the number of calibration parameters. Numerical results confirm the theoretical results and summarize the computational advantage of the adjoint method. Furthermore, provides the connection to optimal stochastic control problems is proven in this thesis.rn

In this thesis, we present a new approach for estimating the effects of wind turbines for a local bat population. We build an individual based model (IBM) which simulates the movement behaviour of every single bat of the population with its own preferences, foraging behaviour and other species characteristics. This behaviour is normalized by a Monte-Carlo simulation which gives us the average behaviour of the population. The result is an occurrence map of the considered habitat which tells us how often the bat and therefore the considered bat population frequent every region of this habitat. Hence, it is possible to estimate the crossing rate of the position of an existing or potential wind turbine. We compare this individual based approach with a partial differential equation based method. This second approach produces a lower computational effort but, unfortunately, we lose information about the movement trajectories at the same time. Additionally, the PDE based model only gives us a density profile. Hence, we lose the information how often each bat crosses special points in the habitat in one night.rnIn a next step we predict the average number of fatalities for each wind turbine in the habitat, depending on the type of the wind turbine and the behaviour of the considered bat species. This gives us the extra mortality caused by the wind turbines for the local population. This value is used for a population model and finally we can calculate whether the population still grows or if there already is a decline in population size which leads to the extinction of the population.rnUsing the combination of all these models, we are able to evaluate the conflict of wind turbines and bats and to predict the result of this conflict. Furthermore, it is possible to find better positions for wind turbines such that the local bat population has a better chance to survive.rnSince bats tend to move in swarm formations under certain circumstances, we introduce swarm simulation using partial integro-differential equations. Thereby, we have a closer look at existence and uniqueness properties of solutions.

In dieser Arbeit untersuchen wir das Optimierungsproblem der optimalen Materialausrichtung orthotroper Materialien in der Hülle von dreidimensionalen Schalenkonstruktionen. Ziel der Optimierung ist dabei die Minimierung der Gesamtnachgiebigkeit der Konstruktion, was der Suche nach einem möglichst steifen Design entspricht. Sowohl die mathematischen als auch die mechanischen Grundlagen werden in kompakter Form zusammengetragen und basierend darauf werden sowohl gradientenbasierte als auch auf mechanischen Prinzipien beruhende, neue Erweiterungen punktweise formulierter Optimierungsverfahren entwickelt und implementiert. Die vorgestellten Verfahren werden anhand des Beispiels des Modells einer Flugzeugtragfläche mit praxisrelevanter Problemgröße getestet und verglichen. Schließlich werden die untersuchten Methoden in ihrer Koppelung mit einem Verfahren zur Topologieoptimierung, basierend auf dem topologischen Gradienten untersucht.

The main achievement of this thesis is an analysis of the accuracy of computations with Loader's algorithm for the binomial density. This analysis in later progress of work could be used for a theorem about the numerical accuracy of algorithms that compute rectangle probabilities for scan statistics of a multinomially distributed random variable. An example that shall illustrate the practical use of probabilities for scan statistics is the following, which arises in epidemiology: Let n patients arrive at a clinic in d = 365 days, each of the patients with probability 1/d at each of these d days and all patients independently from each other. The knowledge of the probability, that there exist 3 adjacent days, in which together more than k patients arrive, helps deciding, after observing data, if there is a cluster which we would not suspect to have occurred randomly but for which we suspect there must be a reason. Formally, this epidemiological example can be described by a multinomial model. As multinomially distributed random variables are examples of Markov increments, which is a fact already used implicitly by Corrado (2011) to compute the distribution function of the multinomial maximum, we can use a generalized version of Corrado's Algorithm to compute the probability described in our example. To compute its result, the algorithm for rectangle probabilities for Markov increments always uses transition probabilities of the corresponding Markov Chain. In the multinomial case, the transition probabilities of the corresponding Markov Chain are binomial probabilities. Therefore, we start an analysis of accuracy of Loader's algorithm for the binomial density, which for example the statistical software R uses. With the help of accuracy bounds for the binomial density we would be able to derive accuracy bounds for the computation of rectangle probabilities for scan statistics of multinomially distributed random variables. To figure out how sharp derived accuracy bounds are, in examples these can be compared to rigorous upper bounds and rigorous lower bounds which we obtain by interval-arithmetical computations.