## 510 Mathematik

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (64)
- Habilitation (2)

#### Keywords

- Optimierung (10)
- Approximation (6)
- Approximationstheorie (6)
- Funktionentheorie (6)
- Partielle Differentialgleichung (6)
- Universalität (6)
- Funktionalanalysis (5)
- universal functions (5)
- Analysis (4)
- Numerische Mathematik (4)

#### Institute

- Mathematik (61)
- Fachbereich 4 (5)

Nonlocal operators are used in a wide variety of models and applications due to many natural phenomena being driven by nonlocal dynamics. Nonlocal operators are integral operators allowing for interactions between two distinct points in space. The nonlocal models investigated in this thesis involve kernels that are assumed to have a finite range of nonlocal interactions. Kernels of this type are used in nonlocal elasticity and convection-diffusion models as well as finance and image analysis. Also within the mathematical theory they arouse great interest, as they are asymptotically related to fractional and classical differential equations.
The results in this thesis can be grouped according to the following three aspects: modeling and analysis, discretization and optimization.
Mathematical models demonstrate their true usefulness when put into numerical practice. For computational purposes, it is important that the support of the kernel is clearly determined. Therefore nonlocal interactions are typically assumed to occur within an Euclidean ball of finite radius. In this thesis we consider more general interaction sets including norm induced balls as special cases and extend established results about well-posedness and asymptotic limits.
The discretization of integral equations is a challenging endeavor. Especially kernels which are truncated by Euclidean balls require carefully designed quadrature rules for the implementation of efficient finite element codes. In this thesis we investigate the computational benefits of polyhedral interaction sets as well as geometrically approximated interaction sets. In addition to that we outline the computational advantages of sufficiently structured problem settings.
Shape optimization methods have been proven useful for identifying interfaces in models governed by partial differential equations. Here we consider a class of shape optimization problems constrained by nonlocal equations which involve interface-dependent kernels. We derive the shape derivative associated to the nonlocal system model and solve the problem by established numerical techniques.

We consider a linear regression model for which we assume that some of the observed variables are irrelevant for the prediction. Including the wrong variables in the statistical model can either lead to the problem of having too little information to properly estimate the statistic of interest, or having too much information and consequently describing fictitious connections. This thesis considers discrete optimization to conduct a variable selection. In light of this, the subset selection regression method is analyzed. The approach gained a lot of interest in recent years due to its promising predictive performance. A major challenge associated with the subset selection regression is the computational difficulty. In this thesis, we propose several improvements for the efficiency of the method. Novel bounds on the coefficients of the subset selection regression are developed, which help to tighten the relaxation of the associated mixed-integer program, which relies on a Big-M formulation. Moreover, a novel mixed-integer linear formulation for the subset selection regression based on a bilevel optimization reformulation is proposed. Finally, it is shown that the perspective formulation of the subset selection regression is equivalent to a state-of-the-art binary formulation. We use this insight to develop novel bounds for the subset selection regression problem, which show to be highly effective in combination with the proposed linear formulation.
In the second part of this thesis, we examine the statistical conception of the subset selection regression and conclude that it is misaligned with its intention. The subset selection regression uses the training error to decide on which variables to select. The approach conducts the validation on the training data, which oftentimes is not a good estimate of the prediction error. Hence, it requires a predetermined cardinality bound. Instead, we propose to select variables with respect to the cross-validation value. The process is formulated as a mixed-integer program with the sparsity becoming subject of the optimization. Usually, a cross-validation is used to select the best model out of a few options. With the proposed program the best model out of all possible models is selected. Since the cross-validation is a much better estimate of the prediction error, the model can select the best sparsity itself.
The thesis is concluded with an extensive simulation study which provides evidence that discrete optimization can be used to produce highly valuable predictive models with the cross-validation subset selection regression almost always producing the best results.

In this thesis, we consider the solution of high-dimensional optimization problems with an underlying low-rank tensor structure. Due to the exponentially increasing computational complexity in the number of dimensions—the so-called curse of dimensionality—they present a considerable computational challenge and become infeasible even for moderate problem sizes.
Multilinear algebra and tensor numerical methods have a wide range of applications in the fields of data science and scientific computing. Due to the typically large problem sizes in practical settings, efficient methods, which exploit low-rank structures, are essential. In this thesis, we consider an application each in both of these fields.
Tensor completion, or imputation of unknown values in partially known multiway data is an important problem, which appears in statistics, mathematical imaging science and data science. Under the assumption of redundancy in the underlying data, this is a well-defined problem and methods of mathematical optimization can be applied to it.
Due to the fact that tensors of fixed rank form a Riemannian submanifold of the ambient high-dimensional tensor space, Riemannian optimization is a natural framework for these problems, which is both mathematically rigorous and computationally efficient.
We present a novel Riemannian trust-region scheme, which compares favourably with the state of the art on selected application cases and outperforms known methods on some test problems.
Optimization problems governed by partial differential equations form an area of scientific computing which has applications in a variety of areas, ranging from physics to financial mathematics. Due to the inherent high dimensionality of optimization problems arising from discretized differential equations, these problems present computational challenges, especially in the case of three or more dimensions. An even more challenging class of optimization problems has operators of integral instead of differential type in the constraint. These operators are nonlocal, and therefore lead to large, dense discrete systems of equations. We present a novel solution method, based on separation of spatial dimensions and provably low-rank approximation of the nonlocal operator. Our approach allows the solution of multidimensional problems with a complexity which is only slightly larger than linear in the univariate grid size; this improves the state of the art for a particular test problem problem by at least two orders of magnitude.

Many combinatorial optimization problems on finite graphs can be formulated as conic convex programs, e.g. the stable set problem, the maximum clique problem or the maximum cut problem. Especially NP-hard problems can be written as copositive programs. In this case the complexity is moved entirely into the copositivity constraint.
Copositive programming is a quite new topic in optimization. It deals with optimization over the so-called copositive cone, a superset of the positive semidefinite cone, where the quadratic form x^T Ax has to be nonnegative for only the nonnegative vectors x. Its dual cone is the cone of completely positive matrices, which includes all matrices that can be decomposed as a sum of nonnegative symmetric vector-vector-products.
The related optimization problems are linear programs with matrix variables and cone constraints.
However, some optimization problems can be formulated as combinatorial problems on infinite graphs. For example, the kissing number problem can be formulated as a stable set problem on a circle.
In this thesis we will discuss how the theory of copositive optimization can be lifted up to infinite dimension. For some special cases we will give applications in combinatorial optimization.

Optimal Control of Partial Integro-Differential Equations and Analysis of the Gaussian Kernel
(2018)

An important field of applied mathematics is the simulation of complex financial, mechanical, chemical, physical or medical processes with mathematical models. In addition to the pure modeling of the processes, the simultaneous optimization of an objective function by changing the model parameters is often the actual goal. Models in fields such as finance, biology or medicine benefit from this optimization step.
While many processes can be modeled using an ordinary differential equation (ODE), partial differential equations (PDEs) are needed to optimize heat conduction and flow characteristics, spreading of tumor cells in tissue as well as option prices. A partial integro-differential equation (PIDE) is a parital differential equation involving an integral operator, e.g., the convolution of the unknown function with a given kernel function. PIDEs occur for example in models that simulate adhesive forces between cells or option prices with jumps.
In each of the two parts of this thesis, a certain PIDE is the main object of interest. In the first part, we study a semilinear PIDE-constrained optimal control problem with the aim to derive necessary optimality conditions. In the second, we analyze a linear PIDE that includes the convolution of the unknown function with the Gaussian kernel.

The economic growth theory analyses which factors affect economic growth and tries to analyze how it can last. A popular neoclassical growth model is the Ramsey-Cass-Koopmans model, which aims to determine how much of its income a nation or an economy should save in order to maximize its welfare. In this thesis, we present and analyze an extended capital accumulation equation of a spatial version of the Ramsey model, balancing diffusive and agglomerative effects. We model the capital mobility in space via a nonlocal diffusion operator which allows for jumps of the capital stock from one location to an other. Moreover, this operator smooths out heterogeneities in the factor distributions slower, which generated a more realistic behavior of capital flows. In addition to that, we introduce an endogenous productivity-production operator which depends on time and on the capital distribution in space. This operator models the technological progress of the economy. The resulting mathematical model is an optimal control problem under a semilinear parabolic integro-differential equation with initial and volume constraints, which are a nonlocal analog to local boundary conditions, and box-constraints on the state and the control variables. In this thesis, we consider this problem on a bounded and unbounded spatial domain, in both cases with a finite time horizon. We derive existence results of weak solutions for the capital accumulation equations in both settings and we proof the existence of a Ramsey equilibrium in the unbounded case. Moreover, we solve the optimal control problem numerically and discuss the results in the economic context.

A matrix A is called completely positive if there exists an entrywise nonnegative matrix B such that A = BB^T. These matrices can be used to obtain convex reformulations of for example nonconvex quadratic or combinatorial problems. One of the main problems with completely positive matrices is checking whether a given matrix is completely positive. This is known to be NP-hard in general. rnrnFor a given matrix completely positive matrix A, it is nontrivial to find a cp-factorization A=BB^T with nonnegative B since this factorization would provide a certificate for the matrix to be completely positive. But this factorization is not only important for the membership to the completely positive cone, it can also be used to recover the solution of the underlying quadratic or combinatorial problem. In addition, it is not a priori known how many columns are necessary to generate a cp-factorization for the given matrix. The minimal possible number of columns is called the cp-rank of A and so far it is still an open question how to derive the cp-rank for a given matrix. Some facts on completely positive matrices and the cp-rank will be given in Chapter 2. Moreover, in Chapter 6, we will see a factorization algorithm, which, for a given completely positive matrix A and a suitable starting point, computes the nonnegative factorization A=BB^T. The algorithm therefore returns a certificate for the matrix to be completely positive. As introduced in Chapter 3, the fundamental idea of the factorization algorithm is to start from an initial square factorization which is not necessarily entrywise nonnegative, and extend this factorization to a matrix for which the number of columns is greater than or equal to the cp-rank of A. Then it is the goal to transform this generated factorization into a cp-factorization. This problem can be formulated as a nonconvex feasibility problem, as shown in Section 4.1, and solved by a method which is based on alternating projections, as proven in Chapter 6. On the topic of alternating projections, a survey will be given in Chapter 5. Here we will see how to apply this technique to several types of sets like subspaces, convex sets, manifolds and semialgebraic sets. Furthermore, we will see some known facts on the convergence rate for alternating projections between these types of sets. Considering more than two sets yields the so called cyclic projections approach. Here some known facts for subspaces and convex sets will be shown. Moreover, we will see a new convergence result on cyclic projections among a sequence of manifolds in Section 5.4. In the context of cp-factorizations, a local convergence result for the introduced algorithm will be given. This result is based on the known convergence for alternating projections between semialgebraic sets. To obtain cp-facrorizations with this first method, it is necessary to solve a second order cone problem in every projection step, which is very costly. Therefore, in Section 6.2, we will see an additional heuristic extension, which improves the numerical performance of the algorithm. Extensive numerical tests in Chapter 7 will show that the factorization method is very fast in most instances. In addition, we will see how to derive a certificate for the matrix to be an element of the interior of the completely positive cone. As a further application, this method can be extended to find a symmetric nonnegative matrix factorization, where we consider an additional low-rank constraint. Here again, the method to derive factorizations for completely positive matrices can be used, albeit with some further adjustments, introduced in Section 8.1. Moreover, we will see that even for the general case of deriving a nonnegative matrix factorization for a given rectangular matrix A, the key aspects of the completely positive factorization approach can be used. To this end, it becomes necessary to extend the idea of finding a completely positive factorization such that it can be used for rectangular matrices. This yields an applicable algorithm for nonnegative matrix factorization in Section 8.2. Numerical results for this approach will suggest that the presented algorithms and techniques to obtain completely positive matrix factorizations can be extended to general nonnegative factorization problems.

We will consider discrete dynamical systems (X,T) which consist of a state space X and a linear operator T acting on X. Given a state x in X at time zero, its state at time n is determined by the n-th iteration T^n(x). We are interested in the long-term behaviour of this system, that means we want to know how the sequence (T^n (x))_(n in N) behaves for increasing n and x in X. In the first chapter, we will sum up the relevant definitions and results of linear dynamics. In particular, in topological dynamics the notions of hypercyclic, frequently hypercyclic and mixing operators will be presented. In the setting of measurable dynamics, the most important definitions will be those of weakly and strongly mixing operators. If U is an open set in the (extended) complex plane containing 0, we can define the Taylor shift operator on the space H(U) of functions f holomorphic in U as Tf(z) = (f(z)- f(0))/z if z is not equal to 0 and otherwise Tf(0) = f'(0). In the second chapter, we will start examining the Taylor shift on H(U) endowed with the topology of locally uniform convergence. Depending on the choice of U, we will study whether or not the Taylor shift is weakly or strongly mixing in the Gaussian sense. Next, we will consider Banach spaces of functions holomorphic on the unit disc D. The first section of this chapter will sum up the basic properties of Bergman and Hardy spaces in order to analyse the dynamical behaviour of the Taylor shift on these Banach spaces in the next part. In the third section, we study the space of Cauchy transforms of complex Borel measures on the unit circle first endowed with the quotient norm of the total variation and then with a weak-* topology. While the Taylor shift is not even hypercyclic in the first case, we show that it is mixing for the latter case. In Chapter 4, we will first introduce Bergman spaces A^p(U) for general open sets and provide approximation results which will be needed in the next chapter where we examine the Taylor shift on these spaces on its dynamical properties. In particular, for 1<=p<2 we will find sufficient conditions for the Taylor shift to be weakly mixing or strongly mixing in the Gaussian sense. For p>=2, we consider specific Cauchy transforms in order to determine open sets U such that the Taylor shift is mixing on A^p(U). In both sections, we will illustrate the results with appropriate examples. Finally, we apply our results to universal Taylor series. The results of Chapter 5 about the Taylor shift allow us to consider the behaviour of the partial sums of the Taylor expansion of functions in general Bergman spaces outside its disc of convergence.

Given a compact set K in R^d, the theory of extension operators examines the question, under which conditions on K, the linear and continuous restriction operators r_n:E^n(R^d)→E^n(K),f↦(∂^α f|_K)_{|α|≤n}, n in N_0 and r:E(R^d)→E(K),f↦(∂^α f|_K)_{α in N_0^d}, have a linear and continuous right inverse. This inverse is called extension operator and this problem is known as Whitney's extension problem, named after Hassler Whitney. In this context, E^n(K) respectively E(K) denote spaces of Whitney jets of order n respectively of infinite order. With E^n(R^d) and E(R^d), we denote the spaces of n-times respectively infinitely often continuously partially differentiable functions on R^d. Whitney already solved the question for finite order completely. He showed that it is always possible to construct a linear and continuous right inverse E_n for r_n. This work is concerned with the question of how the existence of a linear and continuous right inverse of r, fulfilling certain continuity estimates, can be characterized by properties of K. On E(K), we introduce a full real scale of generalized Whitney seminorms (|·|_{s,K})_{s≥0}, where |·|_{s,K} coincides with the classical Whitney seminorms for s in N_0. We equip also E(R^d) with a family (|·|_{s,L})_{s≥0} of those seminorms, where L shall be a a compact set with K in L-°. This family of seminorms on E(R^d) suffices to characterize the continuity properties of an extension operator E, since we can without loss of generality assume that E(E(K)) in D^s(L).
In Chapter 2, we introduce basic concepts and summarize the classical results of Whitney and Stein.
In Chapter 3, we modify the classical construction of Whitney's operators E_n and show that |E_n(·)|_{s,L}≤C|·|_{s,K} for s in[n,n+1).
In Chapter 4, we generalize a result of Frerick, Jordá and Wengenroth and show that LMI(1) for K implies the existence of an extension operator E without loss of derivatives, i.e. we have it fulfils |E(·)|_{s,L}≤C|·|_{s,K} for all s≥0. We show that a large class of self similar sets, which includes the Cantor set and the Sierpinski triangle, admits an extensions operator without loss of derivatives.
In Chapter 5 we generalize a result of Frerick, Jordá and Wengenroth and show that WLMI(r) for r≥1 implies the existence of a tame linear extension operator E having a homogeneous loss of derivatives, such that |E(·)|_{s,L}≤C|·|_{(r+ε)s,K} for all s≥0 and all ε>0.
In the last chapter we characterize the existence of an extension operator having an arbitrary loss of derivatives by the existence of measures on K.

Industrial companies mainly aim for increasing their profit. That is why they intend to reduce production costs without sacrificing the quality. Furthermore, in the context of the 2020 energy targets, energy efficiency plays a crucial role. Mathematical modeling, simulation and optimization tools can contribute to the achievement of these industrial and environmental goals. For the process of white wine fermentation, there exists a huge potential for saving energy. In this thesis mathematical modeling, simulation and optimization tools are customized to the needs of this biochemical process and applied to it. Two different models are derived that represent the process as it can be observed in real experiments. One model takes the growth, division and death behavior of the single yeast cell into account. This is modeled by a partial integro-differential equation and additional multiple ordinary integro-differential equations showing the development of the other substrates involved. The other model, described by ordinary differential equations, represents the growth and death behavior of the yeast concentration and development of the other substrates involved. The more detailed model is investigated analytically and numerically. Thereby existence and uniqueness of solutions are studied and the process is simulated. These investigations initiate a discussion regarding the value of the additional benefit of this model compared to the simpler one. For optimization, the process is described by the less detailed model. The process is identified by a parameter and state estimation problem. The energy and quality targets are formulated in the objective function of an optimal control or model predictive control problem controlling the fermentation temperature. This means that cooling during the process of wine fermentation is controlled. Parameter and state estimation with nonlinear economic model predictive control is applied in two experiments. For the first experiment, the optimization problems are solved by multiple shooting with a backward differentiation formula method for the discretization of the problem and a sequential quadratic programming method with a line search strategy and a Broyden-Fletcher-Goldfarb-Shanno update for the solution of the constrained nonlinear optimization problems. Different rounding strategies are applied to the resulting post-fermentation control profile. Furthermore, a quality assurance test is performed. The outcomes of this experiment are remarkable energy savings and tasty wine. For the next experiment, some modifications are made, and the optimization problems are solved by using direct transcription via orthogonal collocation on finite elements for the discretization and an interior-point filter line-search method for the solution of the constrained nonlinear optimization problems. The second experiment verifies the results of the first experiment. This means that by the use of this novel control strategy energy conservation is ensured and production costs are reduced. From now on tasty white wine can be produced at a lower price and with a clearer conscience at the same time.