510 Mathematik
Refine
Year of publication
Language
- German (17) (remove)
Keywords
- universal functions (5)
- Approximationstheorie (3)
- Funktionentheorie (3)
- Universalität (3)
- Analysis (2)
- Approximation (2)
- Approximation im Komplexen (2)
- Baire's theorem (2)
- Dichtesatz (2)
- Faber series (2)
Quadratische Optimierungsprobleme (QP) haben ein breites Anwendungsgebiet, wie beispielsweise kombinatorische Probleme einschließlich des maximalen Cliquenroblems. Motzkin und Straus [25] zeigten die Äquivalenz zwischen dem maximalen Cliquenproblem und dem standard quadratischen Problem. Auch mathematische Statistik ist ein weiteres Anwendungsgebiet von (QP), sowie eine Vielzahl von ökonomischen Modellen basieren auf (QP), z.B. das quadratische Rucksackproblem. In [5] Bomze et al. haben das standard quadratische Optimierungsproblem (StQP) in ein Copositive-Problem umformuliert. Im Folgenden wurden Algorithmen zur Lösung dieses copositiviten Problems von Bomze und de Klerk in [6] und Dür und Bundfuss in [9] entwickelt. Während die Implementierung dieser Algorithmen einige vielversprechende numerische Ergebnisse hervorbrachten, konnten die Autoren nur die copositive Neuformulierung des (StQP)s lösen. In [11] präsentierte Burer eine vollständig positive Umformulierung für allgemeine (QP)s, sogar mit binären Nebenbedingungen. Leider konnte er keine Methode zur Lösung für ein solches vollständig positives Problem präsentieren, noch wurde eine copositive Formulierung vorgeschlagen, auf die man die oben erwähnten Algorithmen modifizieren und anwenden könnte, um diese zu lösen. Diese Arbeit wird einen neuen endlichen Algorithmus zur Lösung eines standard quadratischen Optimierungsproblems aufstellen. Desweiteren werden in dieser Thesis copositve Darstellungen für ungleichungsbeschränkte sowie gleichungsbeschränkte quadratische Optimierungsprobleme vorgestellt. Für den ersten Ansatz wurde eine vollständig positive Umformulierung des (QP) entwickelt. Die copositive Umformulierung konnte durch Betrachtung des dualen Problems des vollständig positiven Problems erhalten werden. Ein direkterer Ansatz wurde gemacht, indem das Lagrange-Duale eines äquivalenten quadratischen Optimierungsproblems betrachtet wurde, das durch eine semidefinite quadratische Nebenbedingung beschränkt wurde. In diesem Zusammenhang werden Bedingungen für starke Dualität vorgeschlagen.
In dieser Arbeit untersuchen wir das Optimierungsproblem der optimalen Materialausrichtung orthotroper Materialien in der Hülle von dreidimensionalen Schalenkonstruktionen. Ziel der Optimierung ist dabei die Minimierung der Gesamtnachgiebigkeit der Konstruktion, was der Suche nach einem möglichst steifen Design entspricht. Sowohl die mathematischen als auch die mechanischen Grundlagen werden in kompakter Form zusammengetragen und basierend darauf werden sowohl gradientenbasierte als auch auf mechanischen Prinzipien beruhende, neue Erweiterungen punktweise formulierter Optimierungsverfahren entwickelt und implementiert. Die vorgestellten Verfahren werden anhand des Beispiels des Modells einer Flugzeugtragfläche mit praxisrelevanter Problemgröße getestet und verglichen. Schließlich werden die untersuchten Methoden in ihrer Koppelung mit einem Verfahren zur Topologieoptimierung, basierend auf dem topologischen Gradienten untersucht.
Die vorliegende Arbeit teilt sich in die zwei titelgebenden Themengebiete. Inhalt des ersten Teils dieser Arbeit ist die Untersuchung der Proximität, also einer gewissen Messung der Nähe, von Binomial- und Poisson-Verteilungen. Speziell wird die uniforme Struktur des Totalvariationsabstandes auf der abgeschlossenen Menge aller Binomial- und Poisson-Verteilungen charakterisiert, und zwar mit Hilfe der die Verteilungen eindeutig bestimmenden zugehörigen Erwartungswerte und Varianzen. Insbesondere wird eine obere Abschätzung des Totalvariationsabstandes auf der Menge der Binomial- und Poisson-Verteilungen durch eine entsprechende Funktion der zugehörigen Erwartungswerte und Varianzen angegeben. Der zweite Teil der Arbeit widmet sich Konfidenzintervallen für Durchschnitte von Erfolgswahrscheinlichkeiten. Eine der ersten und bekanntesten Arbeiten zu Konfidenzintervallen von Erfolgswahrscheinlichkeiten ist die von Clopper und Pearson (1934). Im Binomialmodell werden hier bei bekanntem Stichprobenumfang und Konfidenzniveau Konfidenzintervalle für die unbekannte Erfolgswahrscheinlichkeit entwickelt. Betrachtet man bei festem Stichprobenumfang statt einer Binomialverteilung, also dem Bildmaß einer homogenen Bernoulli-Kette unter der Summationsabbildung, das entsprechende Bildmaß einer inhomogenen Bernoulli-Kette, so erhält man eine Bernoulli-Faltung mit den entsprechenden Erfolgswahrscheinlichkeiten. Für das Schätzen der durchschnittlichen Erfolgswahrscheinlichkeit im größeren Bernoulli-Faltungs-Modell sind z. B. die einseitigen Clopper-Pearson-Intervalle im Allgemeinen nicht gültig. Es werden hier optimale einseitige und gültige zweiseitige Konfidenzintervalle für die durchschnittliche Erfolgswahrscheinlichkeit im Bernoulli-Faltungs-Modell entwickelt. Die einseitigen Clopper-Pearson-Intervalle sind im Allgemeinen auch nicht gültig für das Schätzen der Erfolgswahrscheinlichkeit im hypergeometrischen Modell, das ein Teilmodell des Bernoulli-Faltungs-Modells ist. Für das hypergeometrische Modell mit festem Stichprobenumfang und bekannter Urnengröße sind die optimalen einseitigen Konfidenzintervalle bekannt. Bei festem Stichprobenumfang und unbekannter Urnengröße werden aus den im Bernoulli-Faltungs-Modell optimalen Konfidenzintervallen optimale Konfidenzintervalle für das hypergeometrische Modell entwickelt. Außerdem wird der Fall betrachtet, dass eine obere Schranke für die unbekannte Urnengröße gegeben ist.
Zu den klassischen Verteilungen der mathematischen Statistik zählen die zentralen F- und t-Verteilungen. Die vorliegende Arbeit untersucht Verallgemeinerungen dieser Verteilungen, die sogenannten doppelt nichtzentralen F- und t-Verteilungen, welche in der statistischen Testtheorie von Bedeutung sind. Die Tatsache, dass die zugehörigen Wahrscheinlichkeitsdichten nur in Form von Parameterintegral- bzw. Doppelreihendarstellungen gegeben sind, stellt eine große Herausforderung bei der Untersuchung analytischer Eigenschaften dar. Unter Verwendung von Techniken aus der Theorie der vorzeichenregulären Funktionen gelingt es, die bisher vermutete, jedoch lediglich aus Approximationen abgeleitete, strikt unimodale Gestalt der Dichtefunktion für eine große Klasse doppelt nichtzentraler Verteilungen zu zeigen. Dieses Resultat gestattet die Untersuchung des eindeutig bestimmten Modus als Funktion gewisser Nichtzentralitätsparameter. Hier erweist sich die Theorie der vorzeichenregulären Funktionen als wichtiges Hilfsmittel, um monotone Abhängigkeiten nachzuweisen.
In dieser Dissertation beschäftigen wir uns mit der konstruktiven und generischen Gewinnung universeller Funktionen. Unter einer universellen Funktion verstehen wie dabei eine solche holomorphe Funktion, die in gewissem Sinne ganze Klassen von Funktionen enthält. Die konstruktive Methode beinhaltet die explizite Konstruktion einer universellen Funktion über einen Grenzprozess, etwa als Polynomreihe. Die generische Methode definiert zunächst rein abstrakt die jeweils gewünschte Klasse von universellen Funktionen. Mithilfe des Baireschen Dichtesatzes wird dann gezeigt, dass die Klasse dieser Funktionen nicht nur nichtleer, sondern sogar G_delta und dicht in dem betrachteten Funktionenraum ist. Beide Methoden bedienen sich der Approximationssätze von Runge und von Mergelyan. Die Hauptergebnisse sind die folgenden: (1) Wir haben konstruktiv die Existenz von universellen Laurentreihen auf mehrfach zusammenhängenden Gebieten bewiesen. Zusätzlich haben wir gezeigt, dass die Menge solcher universeller Laurentreihen dicht im Raum der auf dem betrachteten Gebiet holomorphen Funktionen ist. (2) Die Existenz von universellen Faberreihen auf gewissen Gebieten wurde sowohl konstruktiv als auch generisch bewiesen. (3) Zum einen haben wir konstruktiv gezeigt, dass es so genannte ganze T-universelle Funktionen mit vorgegebenen Approximationswegen gibt. Die Approximationswege sind durch eine hinreichend variable funktionale Form vorgegeben. Die Menge solcher Funktionen ist im Raum der ganzen Funktionen eine dichte G_delta-Menge. Zum anderen haben wir generisch die Existenz von auf einem beschränkten Gebiet T-universellen Funktionen bezüglich gewisser vorgegebener Approximationswege bewiesen. Die Approximationswege sind auch hier genügend allgemein.
In der modernen Survey-Statistik treten immer häufifiger Optimierungsprobleme auf, die es zu lösen gilt. Diese sind oft von hoher Dimension und Simulationsstudien erfordern das mehrmalige Lösen dieser Optimierungsprobleme. Um dies in angemessener Zeit durchführen zu können, sind spezielle Algorithmen und Lösungsansätze erforderlich, welche in dieser Arbeit entwickelt und untersucht werden. Bei den Optimierungsproblemen handelt es sich zum einen um Allokationsprobleme zur Bestimmung optimaler Teilstichprobenumfänge. Hierbei werden neben auf einem Nullstellenproblem basierende, stetige Lösungsmethoden auch ganzzahlige, auf der Greedy-Idee basierende Lösungsmethoden untersucht und die sich ergebenden Optimallösungen miteinander verglichen.Zum anderen beschäftigt sich diese Arbeit mit verschiedenen Kalibrierungsproblemen. Hierzu wird ein alternativer Lösungsansatz zu den bisher praktizierten Methoden vorgestellt. Dieser macht das Lösen eines nichtglatten Nullstellenproblemes erforderlich, was mittels desrnnichtglatten Newton Verfahrens erfolgt. Im Zusammenhang mit nichtglatten Optimierungsalgorithmen spielt die Schrittweitensteuerung eine große Rolle. Hierzu wird ein allgemeiner Ansatz zur nichtmonotonen Schrittweitensteuerung bei Bouligand-differenzierbaren Funktionen betrachtet. Neben der klassischen Kalibrierung wird ferner ein Kalibrierungsproblem zur kohärenten Small Area Schätzung unter relaxierten Nebenbedingungen und zusätzlicher Beschränkung der Variation der Designgewichte betrachtet. Dieses Problem lässt sich in ein hochdimensionales quadratisches Optimierungsproblem umwandeln, welches die Verwendung von Lösern für dünn besetzte Optimierungsprobleme erfordert.Die in dieser Arbeit betrachteten numerischen Probleme können beispielsweise bei Zensen auftreten. In diesem Zusammenhang werden die vorgestellten Ansätze abschließend in Simulationsstudien auf eine mögliche Anwendung auf den Zensus 2011 untersucht, die im Rahmen des Zensus-Stichprobenforschungsprojektes untersucht wurden.
Bei der Preisberechnung von Finanzderivaten bieten sogenannte Jump-diffusion-Modelle mit lokaler Volatilität viele Vorteile. Aus mathematischer Sicht jedoch sind sie sehr aufwendig, da die zugehörigen Modellpreise mittels einer partiellen Integro-Differentialgleichung (PIDG) berechnet werden. Wir beschäftigen uns mit der Kalibrierung der Parameter eines solchen Modells. In einem kleinste-Quadrate-Ansatz werden hierzu Marktpreise von europäischen Standardoptionen mit den Modellpreisen verglichen, was zu einem Problem optimaler Steuerung führt. Ein wesentlicher Teil dieser Arbeit beschäftigt sich mit der Lösung der PIDG aus theoretischer und vor allem aus numerischer Sicht. Die durch ein implizites Zeitdiskretisierungsverfahren entstandenen, dicht besetzten Gleichungssysteme werden mit einem präkonditionierten GMRES-Verfahren gelöst, was zu beinahe linearem Aufwand bezüglich Orts- und Zeitdiskretisierung führt. Trotz dieser effizienten Lösungsmethode sind Funktionsauswertungen der kleinste-Quadrate-Zielfunktion immer noch teuer, so dass im Hauptteil der Arbeit Modelle reduzierter Ordnung basierend auf Proper Orthogonal Decomposition Anwendung finden. Lokale a priori Fehlerabschätzungen für die reduzierte Differentialgleichung sowie für die reduzierte Zielfunktion, kombiniert mit einem Trust-Region-Ansatz zur Globalisierung liefern einen effizienten Algorithmus, der die Rechenzeit deutlich verkürzt. Das Hauptresultat der Arbeit ist ein Konvergenzbeweis für diesen Algorithmus für eine weite Klasse von Optimierungsproblemen, in die auch das betrachtete Kalibrierungsproblem fällt.
Das erste Beispiel einer so genannten universellen holomorphen Funktion stammt von Birkhoff, welcher im Jahre 1929 die Existenz einer ganzen Funktion beweisen konnte, die gewissermaßen jede ganze Funktion durch geeignete Translationen approximieren kann. In der Folgezeit hat sich der Bereich der "universellen Approximation" zu einem eigenständigen Gebiet innerhalb der komplexen Approximationstheorie entwickelt, und es gibt eine Vielzahl an Ergebnissen über universelle Funktionen. Hierbei wurde sich allerdings fast ausschließlich auf das Studium holomorpher und ganzer Funktionen beschränkt, insbesondere die Klasse der meromorphen Funktionen wurde bisher kaum auf das Phänomen der Universalität hin untersucht. Die vorliegende Arbeit beschäftigt sich mit universeller meromorpher Approximation, und geht der Fragestellung nach, ob meromorphe Funktionen mit gewissen Universalitätseigenschaften existieren, und ob die klassischen Ergebnisse aus der universellen holomorphen Approximation auf den meromorphen Fall erweiterbar sind. Hierbei wird zunächst zwischen Translations- und Streckungsuniversalität unterschieden und bewiesen, dass in beiden Fällen jeweils eine im Raum der meromorphen Funktionen residuale Menge an universellen Funktionen existiert. Weiterhin werden die Eigenschaften dieser Funktionen ausführlich studiert. Anschließend werden meromorphe Funktionen auf Ableitungsuniversalität hin untersucht. Hierbei wird einerseits gezeigt, dass im Allgemeinen keine positiven Ergebnisse möglich sind, während andererseits eine spezielle Klasse meromorpher Funktionen betrachtet wird, für welche universelles Verhalten der sukzessiven Ableitungen nachgewiesen werden kann.
Die Ménage-Polynome (engl.: ménage hit polynomials) ergeben sich in natürlicher Weise aus den in der Kombinatorik auftretenden Ménage-Zahlen. Eine Verbindung zu einer gewissen Klasse hypergeometrischer Polynome führt auf die Untersuchung spezieller Folgen von Polynomen vom Typ 3-F-1. Unter Verwendung einer Modifikation der komplexen Laplace-Methode zur gleichmäßigen asymptotischen Auswertung von Parameterintegralen sowie einiger Hilfsmittel aus der Potentialtheorie der komplexen Ebene werden starke und schwache Asymptotiken für die in Rede stehenden Polynomfolgen hergeleitet.
Diese Arbeit beschäftigt sich mit (frequent) universellen Funktionen bezüglich Differentialoperatoren und gewichteten Shiftoperatoren. Hierbei wird ein Charakteristikum von Funktionen vom Exponentialtyp untersucht, das bisher im Rahmen der Universalität noch nicht betrachtet wurde: Das konjugierte Indikatordiagramm. Dabei handelt es sich um eine kompakte und konvexe Menge, die einer Funktion vom Exponentialtyp zugeordnet ist und gewisse Rückschlüsse über das Wachstum und die mögliche Nullstellenverteilung zulässt. Mittels einer speziellen Transformation werden (frequent) universelle Funktionen vom Exponentialtyp bezüglich verschiedener Differentialoperatoren ineinander überführt. Hierdurch ist eine genaue Lokalisation der konjugierten Indikatordiagramme möglicher (frequent) universeller Funktionen für diese Operatoren ableitbar. Durch Konjugation der Differentiation mit gewichteten Shiftoperatoren über das Hadamardprodukt, wird auch für diese Operatoren eine Lokalisation möglicher konjugierter Indikatordiagramme ihrer (frequent) universellen Funktionen erreicht.