• Treffer 1 von 1
Zurück zur Trefferliste

Optimal Error Bounds in Normal and Edgeworth Approximation of Symmetric Binomial and Related Laws

  • This thesis explores local and global normal and Edgeworth approximations for symmetric binomial distributions. Further, it examines the normal approximation of convolution powers of continuous and discrete uniform distributions. We obtain the optimal constant in the local central limit theorem for symmetric binomial distributions and its analogs in higher-order Edgeworth approximation. Further, we offer a novel proof for the known optimal constant in the global central limit theorem for symmetric binomial distributions using Fourier inversion. We also consider the effect of simple continuity correction in the global central limit theorem for symmetric binomial distributions. Here, and in higher-order Edgeworth approximation, we found optimal constants and asymptotically sharp bounds on the approximation error. Furthermore, we prove asymptotically sharp bounds on the error in the local case of a relative normal approximation to symmetric binomial distributions. Additionally, we provide asymptotically sharp bounds on the approximation error in the local central limit theorem for convolution powers of continuous and discrete uniform distributions. Our methods include Fourier inversion formulae, explicit inequalities, and Edgeworth expansions, some of which may be of independent interest.

Volltext Dateien herunterladen

Metadaten exportieren

Metadaten
Verfasserangaben:Patrick van Nerven
URN:urn:nbn:de:hbz:385-1-23767
DOI:https://doi.org/10.25353/ubtr-bd9c-2071-84ad
Gutachter:Lutz Mattner, Bero Roos, Thorsten Neuschel
Betreuer:Lutz Mattner
Dokumentart:Dissertation
Sprache:Englisch
Datum der Fertigstellung:03.11.2024
Veröffentlichende Institution:Universität Trier
Titel verleihende Institution:Universität Trier, Fachbereich 4
Datum der Abschlussprüfung:25.04.2024
Datum der Freischaltung:14.11.2024
Freies Schlagwort / Tag:approximation binomial normal edgeworth local global higher order
GND-Schlagwort:Asymptotische Approximation; Zentraler Grenzwertsatz
Seitenzahl:v, 100 Seiten
Erste Seite:i
Letzte Seite:100
Institute:Fachbereich 4
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):License LogoCC BY-ND: Creative-Commons-Lizenz 4.0 International

$Rev: 13581 $