Refine
Year of publication
- 2019 (83) (remove)
Document Type
- Contribution to a Periodical (28)
- Doctoral Thesis (24)
- Article (11)
- Working Paper (7)
- Part of Periodical (5)
- Book (4)
- Part of a Book (1)
- Conference Proceedings (1)
- Course Material (1)
- Habilitation (1)
Keywords
- Schüler (25)
- Deutschland (19)
- Luxemburg (19)
- Leistungsbewertung (17)
- Rückmeldung (17)
- Unterricht (17)
- Mitbestimmung (16)
- Schülerpartizipation (16)
- Unterrichtsgestaltung (16)
- Schule (10)
Institute
- Politikwissenschaft (27)
- Fachbereich 4 (12)
- Fachbereich 3 (9)
- Fachbereich 1 (7)
- Geographie und Geowissenschaften (6)
- Fachbereich 6 (4)
- Fachbereich 2 (2)
- Fachbereich 5 (1)
- Mathematik (1)
- Servicezentrum eSciences (1)
Finding behavioral parameterization for a 1-D water balance model by multi-criteria evaluation
(2019)
Evapotranspiration is often estimated by numerical simulation. However, to produce accurate simulations, these models usually require on-site measurements for parameterization or calibration. We have to make sure that the model realistically reproduces both, the temporal patterns of soil moisture and evapotranspiration. In this study, we combine three sources of information: (i) measurements of sap velocities; (ii) soil moisture; and (iii) expert knowledge on local runoff generation and water balance to define constraints for a “behavioral” forest stand water balance model. Aiming for a behavioral model, we adjusted soil moisture at saturation, bulk resistance parameters and the parameters of the water retention curve (WRC). We found that the shape of the WRC influences substantially the behavior of the simulation model. Here, only one model realization could be referred to as “behavioral”. All other realizations failed for a least one of our evaluation criteria: Not only transpiration and soil moisture are simulated consistently with our observations, but also total water balance and runoff generation processes. The introduction of a multi-criteria evaluation scheme for the detection of unrealistic outputs made it possible to identify a well performing parameter set. Our findings indicate that measurement of different fluxes and state variables instead of just one and expert knowledge concerning runoff generation facilitate the parameterization of a hydrological model.
Nonlocal operators are used in a wide variety of models and applications due to many natural phenomena being driven by nonlocal dynamics. Nonlocal operators are integral operators allowing for interactions between two distinct points in space. The nonlocal models investigated in this thesis involve kernels that are assumed to have a finite range of nonlocal interactions. Kernels of this type are used in nonlocal elasticity and convection-diffusion models as well as finance and image analysis. Also within the mathematical theory they arouse great interest, as they are asymptotically related to fractional and classical differential equations.
The results in this thesis can be grouped according to the following three aspects: modeling and analysis, discretization and optimization.
Mathematical models demonstrate their true usefulness when put into numerical practice. For computational purposes, it is important that the support of the kernel is clearly determined. Therefore nonlocal interactions are typically assumed to occur within an Euclidean ball of finite radius. In this thesis we consider more general interaction sets including norm induced balls as special cases and extend established results about well-posedness and asymptotic limits.
The discretization of integral equations is a challenging endeavor. Especially kernels which are truncated by Euclidean balls require carefully designed quadrature rules for the implementation of efficient finite element codes. In this thesis we investigate the computational benefits of polyhedral interaction sets as well as geometrically approximated interaction sets. In addition to that we outline the computational advantages of sufficiently structured problem settings.
Shape optimization methods have been proven useful for identifying interfaces in models governed by partial differential equations. Here we consider a class of shape optimization problems constrained by nonlocal equations which involve interface-dependent kernels. We derive the shape derivative associated to the nonlocal system model and solve the problem by established numerical techniques.
In this thesis, we aim to study the sampling allocation problem of survey statistics under uncertainty. We know that the stratum specific variances are generally not known precisely and we have no information about the distribution of uncertainty. The cost of interviewing each person in a stratum is also a highly uncertain parameter as sometimes people are unavailable for the interview. We propose robust allocations to deal with the uncertainty in both stratum specific variances and costs. However, in real life situations, we can face such cases when only one of the variances or costs is uncertain. So we propose three different robust formulations representing these different cases. To the best of our knowledge robust allocation in the sampling allocation problem has not been considered so far in any research.
The first robust formulation for linear problems was proposed by Soyster (1973). Bertsimas and Sim (2004) proposed a less conservative robust formulation for linear problems. We study these formulations and extend them for the nonlinear sampling allocation problem. It is very unlikely to happen that all of the stratum specific variances and costs are uncertain. So the robust formulations are in such a way that we can select how many strata are uncertain which we refer to as the level of uncertainty. We prove that an upper bound on the probability of violation of the nonlinear constraints can be calculated before solving the robust optimization problem. We consider various kinds of datasets and compute robust allocations. We perform multiple experiments to check the quality of the robust allocations and compare them with the existing allocation techniques.
Partizipation im Unterricht von klein auf – geht das? Braucht man für Diskussionen, Aushandlungs-und Entscheidungsprozesse nicht eine bestimmte Reife, über die Dreijährige noch gar nicht verfügen? Das mateneen-Team hat sich auf Limpertsberg ein Bild von der Arbeit mit Vorschulkindern gemacht und festgestellt: das geht sehr wohl!
Partizipativer Unterricht, der nicht nur aus punktuell erlebter Teilnahme besteht, ist — wie Charlotte Keuler es im Leitartikel des vorliegenden Heftes formuliert — durch die Herausforderungen, vor die uns unsere globalisierte Welt stellt, in vielerlei Hinsicht unabdingbar geworden. Kommunikationsfähigkeit, interkulturelle Kompetenz, Wissensmanagement und andere oft zitierte „soft skills“ sind Schlüsselkompetenzen des 21. Jahrhunderts.
Fachunterricht ist der zentrale Erfahrungsraum im Sozialisationsumfeld Schule. Er prägt schon allein aufgrund seines hohen zeitlichen Anteils im Tagesverlauf und der grundlegenden Funktion von Schule Handeln und Wahrnehmung von Lehrpersonen und Lernenden. Umso wichtiger ist es, ihn in die Gestaltung einer demokratischen Schulkultur einzubeziehen.
Bewertungsprozesse in der Schule als Möglichkeit nutzen, um Schüler*innen bei der realistischen Einschätzung und Weiterentwicklung ihrer Lernprozesse und ihres Lernverhaltens zu unterstützen: Die partizipative Leistungsbewertung bietet verschiedene praxisnahe Ansätze zur Förderung von Lernmotivation, Selbstreflexion und demokratischem Verständnis.
Die Partizipationskompetenz von Schülerinnen und Schülern sollte nicht nur durch eine Beteiligung an der formalen Gestaltung und Bewertung des Unterrichts gefördert werden. Vielmehr bietet eine entsprechende Aufgabenkultur vielfältige Möglichkeiten, demokratische Partizipation durch simulatives oder reales Handeln im fachlichen Lernen zu üben und zu reflektieren.
Feedback in der Schule? Das bedeutet häufig eine kurze Rückmeldung der Lehrer*innen an die Schüler*innen zu deren Mitarbeit. Dabei bietet eine etablierte Feedbackkultur im Unterricht breite Möglichkeiten, demokratisches Handeln zu üben und die Unterrichtsqualität zu verbessern, und muss keineswegs nur einseitig ausfallen.
Die Praxishefte Demokratische Schulkultur erscheinen halbjährlich und bieten Schulleitungen und Schulpersonal theoretische Grundlagen und praxisorientierte Anleitungen zur demokratiepädagogischen Schulentwicklung. Jedes Themenheft ist jeweils einer demokratiepädagogischen Bauform oder strategischen Frage der Schulentwicklung gewidmet. Die Praxishefte werden allen Luxemburger Schulen als Printausgabe zur Verfügung gestellt und online mit zusätzlichen Materialien und in französischer Fassung vorgehalten.
We consider a linear regression model for which we assume that some of the observed variables are irrelevant for the prediction. Including the wrong variables in the statistical model can either lead to the problem of having too little information to properly estimate the statistic of interest, or having too much information and consequently describing fictitious connections. This thesis considers discrete optimization to conduct a variable selection. In light of this, the subset selection regression method is analyzed. The approach gained a lot of interest in recent years due to its promising predictive performance. A major challenge associated with the subset selection regression is the computational difficulty. In this thesis, we propose several improvements for the efficiency of the method. Novel bounds on the coefficients of the subset selection regression are developed, which help to tighten the relaxation of the associated mixed-integer program, which relies on a Big-M formulation. Moreover, a novel mixed-integer linear formulation for the subset selection regression based on a bilevel optimization reformulation is proposed. Finally, it is shown that the perspective formulation of the subset selection regression is equivalent to a state-of-the-art binary formulation. We use this insight to develop novel bounds for the subset selection regression problem, which show to be highly effective in combination with the proposed linear formulation.
In the second part of this thesis, we examine the statistical conception of the subset selection regression and conclude that it is misaligned with its intention. The subset selection regression uses the training error to decide on which variables to select. The approach conducts the validation on the training data, which oftentimes is not a good estimate of the prediction error. Hence, it requires a predetermined cardinality bound. Instead, we propose to select variables with respect to the cross-validation value. The process is formulated as a mixed-integer program with the sparsity becoming subject of the optimization. Usually, a cross-validation is used to select the best model out of a few options. With the proposed program the best model out of all possible models is selected. Since the cross-validation is a much better estimate of the prediction error, the model can select the best sparsity itself.
The thesis is concluded with an extensive simulation study which provides evidence that discrete optimization can be used to produce highly valuable predictive models with the cross-validation subset selection regression almost always producing the best results.
Harvesting of silage maize in late autumn on waterlogged soils may result in several ecological problems such as soil compaction and may subsequently be a major threat to soil fertility in Europe. It was hypothesized that perennial energy crops might reduce the vulnerability for soil compaction through earlier harvest dates and improved soil stability. However, the performance of such crops to be grown on soil that are periodically waterlogged and implications for soil chemical and microbial properties are currently an open issue. Within the framework of a two-year pot experiment we investigated the potential of the cup plant (Silphium perfoliatum L.), Jerusalem artichoke (Helianthus tuberosus), giant knotweed (Fallopia japonicum X bohemica), tall wheatgrass (Agropyron elongatum), and reed canary grass (Phalaris arundinacea) for cultivation under periodically waterlogged soil conditions during the winter half year and implications for soil chemical and biological properties. Examined perennial energy crops coped with periodical waterlogging and showed yields 50% to 150% higher than in the control which was never faced with waterlogging. Root formation was similar in waterlogged and non-waterlogged soil layers. Soil chemical and microbial properties clearly responded to different soil moisture treatments. For example, dehydrogenase activity was two to four times higher in the periodically waterlogged treatment compared to the control. Despite waterlogging, aerobic microbial activity was significantly elevated indicating morphological and metabolic adaptation of the perennial crops to withstand waterlogged conditions. Thus, our results reveal first evidence of a site-adapted biomass production on periodical waterlogged soils through the cultivation of perennial energy crops and for intense plant microbe interactions.
A satellite-based climatology of wind-induced surface temperature anomalies for the Antarctic
(2019)
It is well-known that katabatic winds can be detected as warm signatures in the surface temperature over the slopes of the Antarctic ice sheets. For appropriate synoptic forcing and/or topographic channeling, katabatic surges occur, which result in warm signatures also over adjacent ice shelves. Moderate Resolution Imaging Spectroradiometer (MODIS) ice surface temperature (IST) data are used to detect warm signatures over the Antarctic for the winter periods 2002–2017. In addition, high-resolution (5 km) regional climate model data is used for the years of 2002 to 2016. We present a case study and a climatology of wind-induced IST anomalies for the Ross Ice Shelf and the eastern Weddell Sea. The IST anomaly distributions show maxima around 10–15K for the slopes, but values of more than 25K are also found. Katabatic surges represent a strong climatological signal with a mean warm anomaly of more than 5K on more than 120 days per winter for the Byrd Glacier and the Nimrod Glacier on the Ross Ice Shelf. The mean anomaly for the Brunt Ice Shelf is weaker, and exceeds 5K on about 70 days per winter. Model simulations of the IST are compared to the MODIS IST, and show a very good agreement. The model data show that the near-surface stability is a better measure for the response to the wind than the IST itself.
Abstract: Thermal infrared (TIR) multi-/hyperspectral and sun-induced fluorescence (SIF) approaches together with classic solar-reflective (visible, near-, and shortwave infrared reflectance (VNIR)/SWIR) hyperspectral remote sensing form the latest state-of-the-art techniques for the detection of crop water stress. Each of these three domains requires dedicated sensor technology currently in place for ground and airborne applications and either have satellite concepts under development (e.g., HySPIRI/SBG (Surface Biology and Geology), Sentinel-8, HiTeSEM in the TIR) or are subject to satellite missions recently launched or scheduled within the next years (i.e., EnMAP and PRISMA (PRecursore IperSpettrale della Missione Applicativa, launched on March 2019) in the VNIR/SWIR, Fluorescence Explorer (FLEX) in the SIF). Identification of plant water stress or drought is of utmost importance to guarantee global water and food supply. Therefore, knowledge of crop water status over large farmland areas bears large potential for optimizing agricultural water use. As plant responses to water stress are numerous and complex, their physiological consequences affect the electromagnetic signal in different spectral domains. This review paper summarizes the importance of water stress-related applications and the plant responses to water stress, followed by a concise review of water-stress detection through remote sensing, focusing on TIR without neglecting the comparison to other spectral domains (i.e., VNIR/SWIR and SIF) and multi-sensor approaches. Current and planned sensors at ground, airborne, and satellite level for the TIR as well as a selection of commonly used indices and approaches for water-stress detection using the main multi-/hyperspectral remote sensing imaging techniques are reviewed. Several important challenges are discussed that occur when using spectral emissivity, temperature-based indices, and physically-based approaches for water-stress detection in the TIR spectral domain. Furthermore, challenges with data processing and the perspectives for future satellite missions in the TIR are critically examined. In conclusion, information from multi-/hyperspectral TIR together with those from VNIR/SWIR and SIF sensors within a multi-sensor approach can provide profound insights to actual plant (water) status and the rationale of physiological and biochemical changes. Synergistic sensor use will open new avenues for scientists to study plant functioning and the response to environmental stress in a wide range of ecosystems.
Background
In light of the current biodiversity crisis, DNA barcoding is developing into an essential tool to quantify state shifts in global ecosystems. Current barcoding protocols often rely on short amplicon sequences, which yield accurate identification of biological entities in a community but provide limited phylogenetic resolution across broad taxonomic scales. However, the phylogenetic structure of communities is an essential component of biodiversity. Consequently, a barcoding approach is required that unites robust taxonomic assignment power and high phylogenetic utility. A possible solution is offered by sequencing long ribosomal DNA (rDNA) amplicons on the MinION platform (Oxford Nanopore Technologies).
Findings
Using a dataset of various animal and plant species, with a focus on arthropods, we assemble a pipeline for long rDNA barcode analysis and introduce a new software (MiniBar) to demultiplex dual indexed Nanopore reads. We find excellent phylogenetic and taxonomic resolution offered by long rDNA sequences across broad taxonomic scales. We highlight the simplicity of our approach by field barcoding with a miniaturized, mobile laboratory in a remote rainforest. We also test the utility of long rDNA amplicons for analysis of community diversity through metabarcoding and find that they recover highly skewed diversity estimates.
Conclusions
Sequencing dual indexed, long rDNA amplicons on the MinION platform is a straightforward, cost-effective, portable, and universal approach for eukaryote DNA barcoding. Although bulk community analyses using long-amplicon approaches may introduce biases, the long rDNA amplicons approach signifies a powerful tool for enabling the accurate recovery of taxonomic and phylogenetic diversity across biological communities.
In dem Beitrag wird ein praxissoziologischer Ansatz für die Beschreibung und Analyse der grenzüberschreitenden Zusammenarbeit vorgestellt. Dafür wird zunächst die Entwicklung der Kooperationsforschung, ihre charakteristischen Orientierungen sowie die Grundzüge praxistheoretischen Denkens skizziert. Darauf aufbauend wird die heuristische Denkfigur der grenzüberschreitenden Praxisformation erarbeitet, die mit Prämissen herkömmlicher Kooperationsforschung bricht. Sie wird am Beispiel von vier Herausforderungen der grenzüberschreitenden Zusammenarbeit weiter ausdifferenziert, um schließlich zu einer alternativen Perspektivierung der grenzüberschreitenden Zusammenarbeit zu gelangen. Es folgt ein Ausblick, der auf die forschungspraktischen Besonderheiten des vorgestellten Ansatzes eingeht mit Blick auf eine künftige praxissoziologische und multidisziplinär anschlussfähige Kooperationsforschung.
Cet article analyse les pratiques quotidiennes des habitants de Sarre, de Lorraine, du Luxembourg, de Rhénanie-Palatinat et de Wallonie effectuées dans les régions voisines. L’hypothèse est l’existence d’une réalité de vie transfrontalière dans la Grande Région à partir des pratiques transfrontalières de ses habitants. Dans une telle perspective socio-constructiviste, on ne demande pas ce qu'est la Grande Région SaarLorLux, mais comment elle est constituée ou comment elle se manifeste dans la vie quotidienne de ses habitants. Pour donner des éléments de réponse, seront analysées les pratiques transfrontalières les plus courantes, notamment le fait de faire des achats et du shopping, se détendre dans la nature/faire du tourisme, fréquenter des manifestations culturelles et rendre visite à des amis et à la famille. Les considérations se basent sur trois études empiriques récentes dans l’espace d'analyse, qui sont mises en rapport et contextualisées socio-culturellement et socio-économiquement dans le but de relever l'organisation spatiale, les motivations ainsi que d'autres facteurs contextuels des pratiques transfrontalières dans la Grande Région SaarLorLux. Dans cette approche, les flux de mobilité et les préférences spatiales sont reconstruits à partir des pratiques quotidiennes qui donnent un aperçu des réalités de vie transfrontalière dans la Grande Région SaarLorLux.
Faut-il interdire les emballages en plastique ? Quels arguments s’opposent au droit de vote à partir de 14 ans ? Quelles sont les conséquences du Brexit sur l’Europe ? – Ce type de questions a toute sa place en conseil de coopération, car leur discussion offre des possibilités d’apprentissage des processus démocratiques.