Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Keywords
- Meereis (5)
- Satellitenfernerkundung (4)
- Arktis (3)
- sea ice (3)
- Antarktis (2)
- Arctic (2)
- MODIS (2)
- MODIS ice surface temperatures (2)
- Modellierung (2)
- Polargebiete (2)
The presence of sea ice leads in the sea ice cover represents a key feature in polar regions by controlling the heat exchange between the relatively warm ocean and cold atmosphere due to increased fluxes of turbulent sensible and latent heat. Sea ice leads contribute to the sea ice production and are sources for the formation of dense water which affects the ocean circulation. Atmospheric and ocean models strongly rely on observational data to describe the respective state of the sea ice since numerical models are not able to produce sea ice leads explicitly. For the Arctic, some lead datasets are available, but for the Antarctic, no such data yet exist. Our study presents a new algorithm with which leads are automatically identified in satellite thermal infrared images. A variety of lead metrics is used to distinguish between true leads and detection artefacts with the use of fuzzy logic. We evaluate the outputs and provide pixel-wise uncertainties. Our data yield daily sea ice lead maps at a resolution of 1 km2 for the winter months November– April 2002/03–2018/19 (Arctic) and April–September 2003–2019 (Antarctic), respectively. The long-term average of the lead frequency distributions show distinct features related to bathymetric structures in both hemispheres.
A model-based temperature adjustment scheme for wintertime sea-ice production retrievals from MODIS
(2022)
Knowledge of the wintertime sea-ice production in Arctic polynyas is an important requirement for estimations of the dense water formation, which drives vertical mixing in the upper ocean. Satellite-based techniques incorporating relatively high resolution thermal-infrared data from MODIS in combination with atmospheric reanalysis data have proven to be a strong tool to monitor large and regularly forming polynyas and to resolve narrow thin-ice areas (i.e., leads) along the shelf-breaks and across the entire Arctic Ocean. However, the selection of the atmospheric data sets has a large influence on derived polynya characteristics due to their impact on the calculation of the heat loss to the atmosphere, which is determined by the local thin-ice thickness. In order to overcome this methodical ambiguity, we present a MODIS-assisted temperature adjustment (MATA) algorithm that yields corrections of the 2 m air temperature and hence decreases differences between the atmospheric input data sets. The adjustment algorithm is based on atmospheric model simulations. We focus on the Laptev Sea region for detailed case studies on the developed algorithm and present time series of polynya characteristics in the winter season 2019/2020. It shows that the application of the empirically derived correction decreases the difference between different utilized atmospheric products significantly from 49% to 23%. Additional filter strategies are applied that aim at increasing the capability to include leads in the quasi-daily and persistence-filtered thin-ice thickness composites. More generally, the winter of 2019/2020 features high polynya activity in the eastern Arctic and less activity in the Canadian Arctic Archipelago, presumably as a result of the particularly strong polar vortex in early 2020.
The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.
Die polare Kryosphäre stellt einen Schlüsselfaktor für die Erforschung des Klimawandels dar. Insbesondere das Meereis und seine Schneebedeckung, die sich durch eine äußerst hohe und Zeitskalen-übergreifende Sensitivität gegenüber atmosphärischen Einflüssen auszeichnen, können als diagnostische Parameter für die Abschätzung von Veränderungen im Klimasystem herangezogen werden. Die komplexen Rückkopplungsmechanismen, durch die das Meereis mit der globalen Zirkulation der Atmosphäre und des Ozeans in Wechselwirkung steht, werden durch eine zusätzliche Schneeauflage deutlich verstärkt. Insofern tragen die saisonalen Veränderungen der physikalischen Eigenschaften des Schnees, und insbesondere der Beginn der Schneeschmelze, massgeblich zur lokalen und regionalen Energiebilanz sowie zur Meereismassenbilanz bei. In dieser Arbeit wird nun erstmals auf der Basis langjähriger Daten der satellitengestützten Mikrowellenfernerkundung, in Kombination mit Feldmessungen aus dem Weddellmeer während des Sommers 2004/2005, die Charakteristik der sommerlichen Schmelzperiode auf antarktischem Meereis untersucht. Die sommertypischen Prozesse zeichnen sich hier durch deutliche Unterschiede im Vergleich zu arktischem Meereis aus. Wie die Messungen vor Ort zeigen, kommt es während des antarktischen Sommers nicht zu einem kompletten Abschmelzen des Schnees. Vielmehr dominieren ausgeprägte Schmelz-Gefrier-Zyklen im Tagesgang, die eine Abrundung und Vergrösserung der Schneekristalle sowie die Bildung interner Eisschichten verursachen. Dies führt radiometrisch zu Mikrowellensignalen, deren Erfassung im Vergleich zu bestehenden Schmelzerkennungs-Methoden neue Ansätze erfordert. Durch den Vergleich von zeitlich hoch aufgelösten in-situ Messungen der physikalischen Schneeeigenschaften mit parallel dazu erfassten Satellitendaten, sowie durch eine Modellierung der mikrowellenradiometrischen Eigenschaften der Schneeauflage, konnte ein neuer Indikator entwickelt werden, über den das Einsetzen der typischen sommerlichen Schmelzperiode auf antarktischem Meereis identifiziert werden kann. Der DTBA-Indikator beschreibt die Tagesschwankung der radiometrischen Eigenschaften des Schnees und zeichnet sich durch ein Werteverhalten aus, das eine eindeutige Hervorhebung der Sommerphase innerhalb eines saisonalen Zyklus erkennen lässt. Der Indikator wurde verwendet, um mittels des neu entwickelten Schwellwertalgorithmus MeDeA das Einsetzen der sommerlichen Schmelzperiode für das gesamte antarktische Meereisgebiet zu bestimmen. Durch die Anwendung der neuen Methode auf die langjährigen Reihen der Satellitenmessungen konnte ein umfassender Datensatz erstellt werden, der für den Zeitraum von 1988 bis 2006 die räumliche und zeitliche Variabilität des Einsetzens der sommerlichen Schmelzperiode auf antarktischem Meereis beinhaltet. Die Ergebnisse zeigen, dass im Untersuchungszeitraum keine signifikanten Trends im Beginn des Schmelzens der Schneeauflage festzustellen sind, und dass das Schmelzen im Vergleich zur Arktis deutlich schwächer ausgeprägt ist. Eine Untersuchung der atmosphärischen Antriebe durch die Auswertung meteorologischer Reanalysen zeigt den grundlegenden Einfluss der zirkumpolaren Strömungsmuster auf die interannualen Schwankungen des Einsetzens und der Stärke der sommerlichen Schneeschmelze.
A satellite-based climatology of wind-induced surface temperature anomalies for the Antarctic
(2019)
It is well-known that katabatic winds can be detected as warm signatures in the surface temperature over the slopes of the Antarctic ice sheets. For appropriate synoptic forcing and/or topographic channeling, katabatic surges occur, which result in warm signatures also over adjacent ice shelves. Moderate Resolution Imaging Spectroradiometer (MODIS) ice surface temperature (IST) data are used to detect warm signatures over the Antarctic for the winter periods 2002–2017. In addition, high-resolution (5 km) regional climate model data is used for the years of 2002 to 2016. We present a case study and a climatology of wind-induced IST anomalies for the Ross Ice Shelf and the eastern Weddell Sea. The IST anomaly distributions show maxima around 10–15K for the slopes, but values of more than 25K are also found. Katabatic surges represent a strong climatological signal with a mean warm anomaly of more than 5K on more than 120 days per winter for the Byrd Glacier and the Nimrod Glacier on the Ross Ice Shelf. The mean anomaly for the Brunt Ice Shelf is weaker, and exceeds 5K on about 70 days per winter. Model simulations of the IST are compared to the MODIS IST, and show a very good agreement. The model data show that the near-surface stability is a better measure for the response to the wind than the IST itself.
We use a novel sea-ice lead climatology for the winters of 2002/03 to 2020/21 based on satellite observations with 1 km2 spatial resolution to identify predominant patterns in Arctic wintertime sea-ice leads. The causes for the observed spatial and temporal variabilities are investigated using ocean surface current velocities and eddy kinetic energies from an ocean model (Finite Element Sea Ice–Ice-Shelf–Ocean Model, FESOM) and winds from a regional climate model (CCLM) and ERA5 reanalysis, respectively. The presented investigation provides evidence for an influence of ocean bathymetry and associated currents on the mechanic weakening of sea ice and the accompanying occurrence of sea-ice leads with their characteristic spatial patterns. While the driving mechanisms for this observation are not yet understood in detail, the presented results can contribute to opening new hypotheses on ocean–sea-ice interactions. The individual contribution of ocean and atmosphere to regional lead dynamics is complex, and a deeper insight requires detailed mechanistic investigations in combination with considerations of coastal geometries. While the ocean influence on lead dynamics seems to act on a rather long-term scale (seasonal to interannual), the influence of wind appears to trigger sea-ice lead dynamics on shorter timescales of weeks to months and is largely controlled by individual events causing increased divergence. No significant pan-Arctic trends in wintertime leads can be observed.