Refine
Keywords
- Arktis (3)
- Meereis (3)
- regional climate model (3)
- Arctic (2)
- CCLM (2)
- Modell (2)
- Modellierung (2)
- sea ice (2)
- verification (2)
- Atmosphärische Grenzschicht (1)
A model-based temperature adjustment scheme for wintertime sea-ice production retrievals from MODIS
(2022)
Knowledge of the wintertime sea-ice production in Arctic polynyas is an important requirement for estimations of the dense water formation, which drives vertical mixing in the upper ocean. Satellite-based techniques incorporating relatively high resolution thermal-infrared data from MODIS in combination with atmospheric reanalysis data have proven to be a strong tool to monitor large and regularly forming polynyas and to resolve narrow thin-ice areas (i.e., leads) along the shelf-breaks and across the entire Arctic Ocean. However, the selection of the atmospheric data sets has a large influence on derived polynya characteristics due to their impact on the calculation of the heat loss to the atmosphere, which is determined by the local thin-ice thickness. In order to overcome this methodical ambiguity, we present a MODIS-assisted temperature adjustment (MATA) algorithm that yields corrections of the 2 m air temperature and hence decreases differences between the atmospheric input data sets. The adjustment algorithm is based on atmospheric model simulations. We focus on the Laptev Sea region for detailed case studies on the developed algorithm and present time series of polynya characteristics in the winter season 2019/2020. It shows that the application of the empirically derived correction decreases the difference between different utilized atmospheric products significantly from 49% to 23%. Additional filter strategies are applied that aim at increasing the capability to include leads in the quasi-daily and persistence-filtered thin-ice thickness composites. More generally, the winter of 2019/2020 features high polynya activity in the eastern Arctic and less activity in the Canadian Arctic Archipelago, presumably as a result of the particularly strong polar vortex in early 2020.
The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.
It is generally assumed that the temperature increase associated with global climate change will lead to increased thunderstorm intensity and associated heavy precipitation events. In the present study it is investigated whether the frequency of thunderstorm occurrences will in- or decrease and how the spatial distribution will change for the A1B scenario. The region of interest is Central Europe with a special focus on the Saar-Lor-Lux region (Saarland, Lorraine, Luxembourg) and Rhineland-Palatinate.Daily model data of the COSMO-CLM with a horizontal resolution of 4.5 km is used. The simulations were carried out for two different time slices: 1971"2000 (C20), and 2071"2100 (A1B). Thunderstorm indices are applied to detect thunderstorm-prone conditions and differences in their frequency of occurrence in the two thirty years timespans. The indices used are CAPE (Convective Available Potential Energy), SLI (Surface Lifted Index), and TSP (Thunderstorm Severity Potential).The investigation of the present and future thunderstorm conducive conditions show a significant increase of non-thunderstorm conditions. The regional averaged thunderstorm frequencies will decrease in general, but only in the Alps a potential increase in thunderstorm occurrences and intensity is found. The comparison between time slices of 10 and 30 years length show that the number of gridpoints with significant signals increases only slightly. In order to get a robust signal for severe thunderstorm, an extension to more than 75 years would be necessary.
Regional climate models are a valuable tool for the study of the climate processes and climate change in polar regions, but the performance of the models has to be evaluated using experimental data. The regional climate model CCLM was used for simulations for the MOSAiC period with a horizontal resolution of 14 km (whole Arctic). CCLM was used in a forecast mode (nested in ERA5) and used a thermodynamic sea ice model. Sea ice concentration was taken from AMSR2 data (C15 run) and from a high-resolution data set (1 km) derived from MODIS data (C15MOD0 run). The model was evaluated using radiosonde data and data of different profiling systems with a focus on the winter period (November–April). The comparison with radiosonde data showed very good agreement for temperature, humidity, and wind. A cold bias was present in the ABL for November and December, which was smaller for the C15MOD0 run. In contrast, there was a warm bias for lower levels in March and April, which was smaller for the C15 run. The effects of different sea ice parameterizations were limited to heights below 300 m. High-resolution lidar and radar wind profiles as well as temperature and integrated water vapor (IWV) data from microwave radiometers were used for the comparison with CCLM for case studies, which included low-level jets. LIDAR wind profiles have many gaps, but represent a valuable data set for model evaluation. Comparisons with IWV and temperature data of microwave radiometers show very good agreement.