### Refine

#### Document Type

- Doctoral Thesis (54)
- Article (2)
- Habilitation (1)

#### Keywords

- Optimierung (6)
- Finanzierung (4)
- Schätzung (4)
- Stichprobe (4)
- Erhebungsverfahren (3)
- Unternehmen (3)
- survey statistics (3)
- Amtliche Statistik (2)
- Analysis (2)
- Approximation (2)

#### Institute

- Fachbereich 4 (57) (remove)

Survey data can be viewed as incomplete or partially missing from a variety of perspectives and there are different ways of dealing with this kind of data in the prediction and the estimation of economic quantities. In this thesis, we present two selected research contexts in which the prediction or estimation of economic quantities is examined under incomplete survey data.
These contexts are first the investigation of composite estimators in the German Microcensus (Chapters 3 and 4) and second extensions of multivariate Fay-Herriot (MFH) models (Chapters 5 and 6), which are applied to small area problems.
Composite estimators are estimation methods that take into account the sample overlap in rotating panel surveys such as the German Microcensus in order to stabilise the estimation of the statistics of interest (e.g. employment statistics). Due to the partial sample overlaps, information from previous samples is only available for some of the respondents, so the data are partially missing.
MFH models are model-based estimation methods that work with aggregated survey data in order to obtain more precise estimation results for small area problems compared to classical estimation methods. In these models, several variables of interest are modelled simultaneously. The survey estimates of these variables, which are used as input in the MFH models, are often partially missing. If the domains of interest are not explicitly accounted for in a sampling design, the sizes of the samples allocated to them can, by chance, be small. As a result, it can happen that either no estimates can be calculated at all or that the estimated values are not published by statistical offices because their variances are too large.

Die Dissertation beschäftigt sich mit einer neuartigen Art von Branch-and-Bound Algorithmen, deren Unterschied zu klassischen Branch-and-Bound Algorithmen darin besteht, dass
das Branching durch die Addition von nicht-negativen Straftermen zur Zielfunktion erfolgt
anstatt durch das Hinzufügen weiterer Nebenbedingungen. Die Arbeit zeigt die theoretische Korrektheit des Algorithmusprinzips für verschiedene allgemeine Klassen von Problemen und evaluiert die Methode für verschiedene konkrete Problemklassen. Für diese Problemklassen, genauer Monotone und Nicht-Monotone Gemischtganzzahlige Lineare Komplementaritätsprobleme und Gemischtganzzahlige Lineare Probleme, präsentiert die Arbeit
verschiedene problemspezifische Verbesserungsmöglichkeiten und evaluiert diese numerisch.
Weiterhin vergleicht die Arbeit die neue Methode mit verschiedenen Benchmark-Methoden
mit größtenteils guten Ergebnissen und gibt einen Ausblick auf weitere Anwendungsgebiete
und zu beantwortende Forschungsfragen.

Sample surveys are a widely used and cost effective tool to gain information about a population under consideration. Nowadays, there is an increasing demand not only for information on the population level but also on the level of subpopulations. For some of these subpopulations of interest, however, very small subsample sizes might occur such that the application of traditional estimation methods is not expedient. In order to provide reliable information also for those so called small areas, small area estimation (SAE) methods combine auxiliary information and the sample data via a statistical model.
The present thesis deals, among other aspects, with the development of highly flexible and close to reality small area models. For this purpose, the penalized spline method is adequately modified which allows to determine the model parameters via the solution of an unconstrained optimization problem. Due to this optimization framework, the incorporation of shape constraints into the modeling process is achieved in terms of additional linear inequality constraints on the optimization problem. This results in small area estimators that allow for both the utilization of the penalized spline method as a highly flexible modeling technique and the incorporation of arbitrary shape constraints on the underlying P-spline function.
In order to incorporate multiple covariates, a tensor product approach is employed to extend the penalized spline method to multiple input variables. This leads to high-dimensional optimization problems for which naive solution algorithms yield an unjustifiable complexity in terms of runtime and in terms of memory requirements. By exploiting the underlying tensor nature, the present thesis provides adequate computationally efficient solution algorithms for the considered optimization problems and the related memory efficient, i.e. matrix-free, implementations. The crucial point thereby is the (repetitive) application of a matrix-free conjugated gradient method, whose runtime is drastically reduced by a matrx-free multigrid preconditioner.

Nonlocal operators are used in a wide variety of models and applications due to many natural phenomena being driven by nonlocal dynamics. Nonlocal operators are integral operators allowing for interactions between two distinct points in space. The nonlocal models investigated in this thesis involve kernels that are assumed to have a finite range of nonlocal interactions. Kernels of this type are used in nonlocal elasticity and convection-diffusion models as well as finance and image analysis. Also within the mathematical theory they arouse great interest, as they are asymptotically related to fractional and classical differential equations.
The results in this thesis can be grouped according to the following three aspects: modeling and analysis, discretization and optimization.
Mathematical models demonstrate their true usefulness when put into numerical practice. For computational purposes, it is important that the support of the kernel is clearly determined. Therefore nonlocal interactions are typically assumed to occur within an Euclidean ball of finite radius. In this thesis we consider more general interaction sets including norm induced balls as special cases and extend established results about well-posedness and asymptotic limits.
The discretization of integral equations is a challenging endeavor. Especially kernels which are truncated by Euclidean balls require carefully designed quadrature rules for the implementation of efficient finite element codes. In this thesis we investigate the computational benefits of polyhedral interaction sets as well as geometrically approximated interaction sets. In addition to that we outline the computational advantages of sufficiently structured problem settings.
Shape optimization methods have been proven useful for identifying interfaces in models governed by partial differential equations. Here we consider a class of shape optimization problems constrained by nonlocal equations which involve interface-dependent kernels. We derive the shape derivative associated to the nonlocal system model and solve the problem by established numerical techniques.

This work studies typical mathematical challenges occurring in the modeling and simulation of manufacturing processes of paper or industrial textiles. In particular, we consider three topics: approximate models for the motion of small inertial particles in an incompressible Newtonian fluid, effective macroscopic approximations for a dilute particle suspension contained in a bounded domain accounting for a non-uniform particle distribution and particle inertia, and possibilities for a reduction of computational cost in the simulations of slender elastic fibers moving in a turbulent fluid flow.
We consider the full particle-fluid interface problem given in terms of the Navier-Stokes equations coupled to momentum equations of a small rigid body. By choosing an appropriate asymptotic scaling for the particle-fluid density ratio and using an asymptotic expansion for the solution components, we derive approximations of the original interface problem. The approximate systems differ according to the chosen scaling of the density ratio in their physical behavior allowing the characterization of different inertial regimes.
We extend the asymptotic approach to the case of many particles suspended in a Newtonian fluid. Under specific assumptions for the combination of particle size and particle number, we derive asymptotic approximations of this system. The approximate systems describe the particle motion which allows to use a mean field approach in order to formulate the continuity equation for the particle probability density function. The coupling of the latter with the approximation for the fluid momentum equation then reveals a macroscopic suspension description which accounts for non-uniform particle distributions in space and for small particle inertia.
A slender fiber in a turbulent air flow can be modeled as a stochastic inextensible one-dimensionally parametrized Kirchhoff beam, i.e., by a stochastic partial differential algebraic equation. Its simulations involve the solution of large non-linear systems of equations by Newton's method. In order to decrease the computational time, we explore different methods for the estimation of the solution. Additionally, we apply smoothing techniques to the Wiener Process in order to regularize the stochastic force driving the fiber, exploring their respective impact on the solution and performance. We also explore the applicability of the Wiener chaos expansion as a solution technique for the simulation of the fiber dynamics.

For decades, academics and practitioners aim to understand whether and how (economic) events affect firm value. Optimally, these events occur exogenously, i.e. suddenly and unexpectedly, so that an accurate evaluation of the effects on firm value can be conducted. However, recent studies show that even the evaluation of exogenous events is often prone to many challenges that can lead to diverse interpretations, resulting in heated debates. Recently, there have been intense debates in particular on the impact of takeover defenses and of Covid-19 on firm value. The announcements of takeover defenses and the propagation of Covid-19 are exogenous events that occur worldwide and are economically important, but have been insufficiently examined. By answering open research questions, this dissertation aims to provide a greater understanding about the heterogeneous effects that exogenous events such as the announcements of takeover defenses and the propagation of Covid-19 have on firm value. In addition, this dissertation analyzes the influence of certain firm characteristics on the effects of these two exogenous events and identifies influencing factors that explain contradictory results in the existing literature and thus can reconcile different views.

Even though proper research on Cauchy transforms has been done, there are still a lot of open questions. For example, in the case of representation theorems, i.e. the question when a function can be represented as a Cauchy transform, there is 'still no completely satisfactory answer' ([9], p. 84). There are characterizations for measures on the circle as presented in the monograph [7] and for general compactly supported measures on the complex plane as presented in [27]. However, there seems to exist no systematic treatise of the Cauchy transform as an operator on $L_p$ spaces and weighted $L_p$ spaces on the real axis.
This is the point where this thesis draws on and we are interested in developing several characterizations for the representability of a function by Cauchy transforms of $L_p$ functions. Moreover, we will attack the issue of integrability of Cauchy transforms of functions and measures, a topic which is only partly explored (see [43]). We will develop different approaches involving Fourier transforms and potential theory and investigate into sufficient conditions and characterizations.
For our purposes, we shall need some notation and the concept of Hardy spaces which will be part of the preliminary Chapter 1. Moreover, we introduce Fourier transforms and their complex analogue, namely Fourier-Laplace transforms. This will be of extraordinary usage due to the close connection of Cauchy and Fourier(-Laplace) transforms.
In the second chapter we shall begin our research with a discussion of the Cauchy transformation on the classical (unweighted) $L_p$ spaces. Therefore, we start with the boundary behavior of Cauchy transforms including an adapted version of the Sokhotski-Plemelj formula. This result will turn out helpful for the determination of the image of the Cauchy transformation under $L_p(\R)$ for $p\in(1,\infty).$ The cases $p=1$ and $p=\infty$ are playing special roles here which justifies a treatise in separate sections. For $p=1$ we will involve the real Hardy space $H_{1}(\R)$ whereas the case $p=\infty$ shall be attacked by an approach incorporating intersections of Hardy spaces and certain subspaces of $L_{\infty}(\R).$
The third chapter prepares ourselves for the study of the Cauchy transformation on subspaces of $L_{p}(\R).$ We shall give a short overview of the basic facts about Cauchy transforms of measures and then proceed to Cauchy transforms of functions with support in a closed set $X\subset\R.$ Our goal is to build up the main theory on which we can fall back in the subsequent chapters.
The fourth chapter deals with Cauchy transforms of functions and measures supported by an unbounded interval which is not the entire real axis. For convenience we restrict ourselves to the interval $[0,\infty).$ Bringing once again the Fourier-Laplace transform into play, we deduce complex characterizations for the Cauchy transforms of functions in $L_{2}(0,\infty).$ Moreover, we analyze the behavior of Cauchy transform on several half-planes and shall use these results for a fairly general geometric characterization. In the second section of this chapter, we focus on Cauchy transforms of measures with support in $[0,\infty).$ In this context, we shall derive a reconstruction formula for these Cauchy transforms holding under pretty general conditions as well as results on the behaviur on the left half-plane. We close this chapter by rather technical real-type conditions and characterizations for Cauchy transforms of functions in $L_p(0,\infty)$ basing on an approach in [82].
The most common case of Cauchy transforms, those of compactly supported functions or measures, is the subject of Chapter 5. After complex and geometric characterizations originating from similar ideas as in the fourth chapter, we adapt a functional-analytic approach in [27] to special measures, namely those with densities to a given complex measure $\mu.$ The chapter is closed with a study of the Cauchy transformation on weighted $L_p$ spaces. Here, we choose an ansatz through the finite Hilbert transform on $(-1,1).$
The sixth chapter is devoted to the issue of integrability of Cauchy transforms. Since this topic has no comprehensive treatise in literature yet, we start with an introduction of weighted Bergman spaces and general results on the interaction of the Cauchy transformation in these spaces. Afterwards, we combine the theory of Zen spaces with Cauchy transforms by using once again their connection with Fourier transforms. Here, we shall encounter general Paley-Wiener theorems of the recent past. Lastly, we attack the issue of integrability of Cauchy transforms by means of potential theory. Therefore, we derive a Fourier integral formula for the logarithmic energy in one and multiple dimensions and give applications to Fourier and hence Cauchy transforms.
Two appendices are annexed to this thesis. The first one covers important definitions and results from measure theory with a special focus on complex measures. The second appendix contains Cauchy transforms of frequently used measures and functions with detailed calculations.

The economic growth theory analyses which factors affect economic growth and tries to analyze how it can last. A popular neoclassical growth model is the Ramsey-Cass-Koopmans model, which aims to determine how much of its income a nation or an economy should save in order to maximize its welfare. In this thesis, we present and analyze an extended capital accumulation equation of a spatial version of the Ramsey model, balancing diffusive and agglomerative effects. We model the capital mobility in space via a nonlocal diffusion operator which allows for jumps of the capital stock from one location to an other. Moreover, this operator smooths out heterogeneities in the factor distributions slower, which generated a more realistic behavior of capital flows. In addition to that, we introduce an endogenous productivity-production operator which depends on time and on the capital distribution in space. This operator models the technological progress of the economy. The resulting mathematical model is an optimal control problem under a semilinear parabolic integro-differential equation with initial and volume constraints, which are a nonlocal analog to local boundary conditions, and box-constraints on the state and the control variables. In this thesis, we consider this problem on a bounded and unbounded spatial domain, in both cases with a finite time horizon. We derive existence results of weak solutions for the capital accumulation equations in both settings and we proof the existence of a Ramsey equilibrium in the unbounded case. Moreover, we solve the optimal control problem numerically and discuss the results in the economic context.

Hybrid Modelling in general, describes the combination of at least two different methods to solve one specific task. As far as this work is concerned, Hybrid Models describe an approach to combine sophisticated, well-studied mathematical methods with Deep Neural Networks to solve parameter estimation tasks. To combine these two methods, the data structure of artifi- cially generated acceleration data of an approximate vehicle model, the Quarter-Car-Model, is exploited. Acceleration of individual components within a coupled dynamical system, can be described as a second order ordinary differential equation, including velocity and dis- placement of coupled states, scaled by spring - and damping-coefficient of the system. An appropriate numerical integration scheme can then be used to simulate discrete acceleration profiles of the Quarter-Car-Model with a random variation of the parameters of the system. Given explicit knowledge about the data structure, one can then investigate under which con- ditions it is possible to estimate the parameters of the dynamical system for a set of randomly generated data samples. We test, if Neural Networks are capable to solve parameter estima- tion problems in general, or if they can be used to solve several sub-tasks, which support a state-of-the-art parameter estimation method. Hybrid Models are presented for parameter estimation under uncertainties, including for instance measurement noise or incompleteness of measurements, which combine knowledge about the data structure and several Neural Networks for robust parameter estimation within a dynamical system.

Our goal is to approximate energy forms on suitable fractals by discrete graph energies and certain metric measure spaces, using the notion of quasi-unitary equivalence. Quasi-unitary equivalence generalises the two concepts of unitary equivalence and norm resolvent convergence to the case of operators and energy forms defined in varying Hilbert spaces.
More precisely, we prove that the canonical sequence of discrete graph energies (associated with the fractal energy form) converges to the energy form (induced by a resistance form) on a finitely ramified fractal in the sense of quasi-unitary equivalence. Moreover, we allow a perturbation by magnetic potentials and we specify the corresponding errors.
This aforementioned approach is an approximation of the fractal from within (by an increasing sequence of finitely many points). The natural step that follows this realisation is the question whether one can also approximate fractals from outside, i.e., by a suitable sequence of shrinking supersets. We partly answer this question by restricting ourselves to a very specific structure of the approximating sets, namely so-called graph-like manifolds that respect the structure of the fractals resp. the underlying discrete graphs. Again, we show that the canonical (properly rescaled) energy forms on such a sequence of graph-like manifolds converge to the fractal energy form (in the sense of quasi-unitary equivalence).
From the quasi-unitary equivalence of energy forms, we conclude the convergence of the associated linear operators, convergence of the spectra and convergence of functions of the operators – thus essentially the same as in the case of the usual norm resolvent convergence.

Issues in Price Measurement
(2022)

This thesis focuses on the issues in price measurement and consists of three chapters. Due to outdated weighting information, a Laspeyres-based consumer price index (CPI) is prone to accumulating upward bias. Therefore, chapter 1 introduces and examines simple and transparent revision approaches that retrospectively address the source of the bias. They provide a consistent long-run time series of the CPI and require no additional information. Furthermore, a coherent decomposition of the bias into the contributions of individual product groups is developed. In a case study, the approaches are applied to a Laspeyres-based CPI. The empirical results confirm the theoretical predictions. The proposed revision approaches are adoptable not only to most national CPIs but also to other price-level measures such as the producer price index or the import and export price indices.
Chapter 2 is dedicated to the measurement of import and export price indices. Such indices are complicated by the impact of exchange rates. These indices are usually also compiled by some Laspeyres type index. Therefore, substitution bias is an issue. The terms of trade (ratio of export and import price index) are therefore also likely to be distorted. The underlying substitution bias accumulates over time. The present article applies a simple and transparent retroactive correction approach that addresses the source of the substitution bias and produces meaningful long-run time series of import and export price levels and, therefore, of the terms of trade. Furthermore, an empirical case study is conducted that demonstrates the efficacy and versatility of the correction approach.
Chapter 3 leaves the field of index revision and studies another issue in price measurement, namely, the economic evaluation of digital products in monetary terms that have zero market prices. This chapter explores different methods of economic valuation and pricing of free digital products and proposes an alternative way to calculate the economic value and a shadow price of free digital products: the Usage Cost Model (UCM). The goal of the chapter is, first of all, to formulate a theoretical framework and incorporate an alternative measure of the value of free digital products. However, an empirical application is also made to show the work of the theoretical model. Some conclusions on applicability are drawn at the end of the chapter.

This thesis comprises of four research papers on the economics of education and industrial relations, which contribute to the field of empirical economic research. All of the corresponding papers focus on analysing how much time individuals spend on specific activities. The allocation of available time resources is a decision that individuals make throughout their lifetime. In this thesis, we consider individuals at different stages of their lives - students at school, university students, and dependent employees at the workplace.
Part I includes two research studies on student's behaviour in secondary and tertiary education.
Chapter 2 explores whether students who are relatively younger or older within the school year exhibit differential time allocation. Building on previous findings showing that relatively younger students perform worse in school, the study shows that relatively younger students are aware of their poor performance in school and feel more strain as a result. Nevertheless, there are no clear differences to be found in terms of time spent on homework, while relatively younger students spend more time watching television and less time on sports activities. Thus, the results suggest that the lower learning outcomes are not associated with different time allocations between school-related activities and non-school-related activities.
Chapter 3 analyses how individual ability and labour market prospects affect study behaviour. The theoretical modelling predicts that both determinants increase study effort. The empirical investigation is based on cross-sectional data from the National Educational Panel Study (NEPS) and includes thousands of students in Germany. The analyses show that more gifted students exhibit lower subjective effort levels and invest less time in self-study. In contrast, very good labour market prospects lead to more effort exerted by the student, both qualitatively and quantitatively. The potential endogeneity problem is taken into account by using regional unemployment data as an instrumental variable.
Part II includes two labour economic studies on determinants of overtime. Both studies belong to the field of industrial relations, as they focus on union membership on the one hand and the interplay of works councils and collective bargaining coverage on the other.
Chapter 4 shows that union members work less overtime than non-members do. The econometric approach takes the problem of unobserved heterogeneity into account; but provides no evidence that this issue affects the results. Different channels that could lead to this relationship are analysed by examining relevant subgroups separately. For example, this effect of union membership can also be observed in establishments with works councils and for workers who are very likely to be covered by collective bargaining agreements. The study concludes that the observed effect is due to the fact that union membership can protect workers from corresponding increased working time demands by employers.
Chapter 5 builds on previous studies showing a negative effect of works councils on overtime. In addition to co-determination by works councils at the firm level, collective bargaining coverage is an important factor in the German industrial relations system. Corresponding data was not available in the SOEP for quite some time. Therefore, the study uses recent SOEP data, which also contains information on collective bargaining coverage. A cross-sectional analysis is conducted to examine the effects of works councils in establishments with and without collective bargaining coverage. Similar to studies analysing other outcome variables, the results show that the effect of works councils exists only for employees covered by a collective bargaining agreement.

Traditionell werden Zufallsstichprobenerhebungen so geplant, dass nationale Statistiken zuverlässig mit einer adäquaten Präzision geschätzt werden können. Hierbei kommen vorrangig designbasierte, Modell-unterstützte (engl. model assisted) Schätzmethoden zur Anwendung, die überwiegend auf asymptotischen Eigenschaften beruhen. Für kleinere Stichprobenumfänge, wie man sie für Small Areas (Domains bzw. Subpopulationen) antrifft, eignen sich diese Schätzmethoden eher nicht, weswegen für diese Anwendung spezielle modellbasierte Small Area-Schätzverfahren entwickelt wurden. Letztere können zwar Verzerrungen aufweisen, besitzen jedoch häufig einen kleineren mittleren quadratischen Fehler der Schätzung als dies für designbasierte Schätzer der Fall ist. Den Modell-unterstützten und modellbasierten Methoden ist gemeinsam, dass sie auf statistischen Modellen beruhen; allerdings in unterschiedlichem Ausmass. Modell-unterstützte Verfahren sind in der Regel so konstruiert, dass der Beitrag des Modells bei sehr grossen Stichprobenumfängen gering ist (bei einer Grenzwertbetrachtung sogar wegfällt). Bei modellbasierten Methoden nimmt das Modell immer eine tragende Rolle ein, unabhängig vom Stichprobenumfang. Diese Überlegungen veranschaulichen, dass das unterstellte Modell, präziser formuliert, die Güte der Modellierung für die Qualität der Small Area-Statistik von massgeblicher Bedeutung ist. Wenn es nicht gelingt, die empirischen Daten durch ein passendes Modell zu beschreiben und mit den entsprechenden Methoden zu schätzen, dann können massive Verzerrungen und / oder ineffiziente Schätzungen resultieren.
Die vorliegende Arbeit beschäftigt sich mit der zentralen Frage der Robustheit von Small Area-Schätzverfahren. Als robust werden statistische Methoden dann bezeichnet, wenn sie eine beschränkte Einflussfunktion und einen möglichst hohen Bruchpunkt haben. Vereinfacht gesprochen zeichnen sich robuste Verfahren dadurch aus, dass sie nur unwesentlich durch Ausreisser und andere Anomalien in den Daten beeinflusst werden. Die Untersuchung zur Robustheit konzentriert sich auf die folgenden Modelle bzw. Schätzmethoden:
i) modellbasierte Schätzer für das Fay-Herriot-Modell (Fay und Herrot, 1979, J. Amer. Statist. Assoc.) und das elementare Unit-Level-Modell (vgl. Battese et al., 1988, J. Amer. Statist. Assoc.).
ii) direkte, Modell-unterstützte Schätzer unter der Annahme eines linearen Regressionsmodells.
Das Unit-Level-Modell zur Mittelwertschätzung beruht auf einem linearen gemischten Gauss'schen Modell (engl. mixed linear model, MLM) mit blockdiagonaler Kovarianzmatrix. Im Gegensatz zu bspw. einem multiplen linearen Regressionsmodell, besitzen MLM-Modelle keine nennenswerten Invarianzeigenschaften, so dass eine Kontamination der abhängigen Variablen unvermeidbar zu verzerrten Parameterschätzungen führt. Für die Maximum-Likelihood-Methode kann die resultierende Verzerrung nahezu beliebig groß werden. Aus diesem Grund haben Richardson und Welsh (1995, Biometrics) die robusten Schätzmethoden RML 1 und RML 2 entwickelt, die bei kontaminierten Daten nur eine geringe Verzerrung aufweisen und wesentlich effizienter sind als die Maximum-Likelihood-Methode. Eine Abwandlung von Methode RML 2 wurde Sinha und Rao (2009, Canad. J. Statist.) für die robuste Schätzung von Unit-Level-Modellen vorgeschlagen. Allerdings erweisen sich die gebräuchlichen numerischen Verfahren zur Berechnung der RML-2-Methode (dies gilt auch für den Vorschlag von Sinha und Rao) als notorisch unzuverlässig. In dieser Arbeit werden zuerst die Konvergenzprobleme der bestehenden Verfahren erörtert und anschließend ein numerisches Verfahren vorgeschlagen, das sich durch wesentlich bessere numerische Eigenschaften auszeichnet. Schließlich wird das vorgeschlagene Schätzverfahren im Rahmen einer Simulationsstudie untersucht und anhand eines empirischen Beispiels zur Schätzung von oberirdischer Biomasse in norwegischen Kommunen illustriert.
Das Modell von Fay-Herriot kann als Spezialfall eines MLM mit blockdiagonaler Kovarianzmatrix aufgefasst werden, obwohl die Varianzen des Zufallseffekts für die Small Areas nicht geschätzt werden müssen, sondern als bereits bekannte Größen betrachtet werden. Diese Eigenschaft kann man sich nun zunutze machen, um die von Sinha und Rao (2009) vorgeschlagene Robustifizierung des Unit-Level-Modells direkt auf das Fay-Herriot Model zu übertragen. In der vorliegenden Arbeit wird jedoch ein alternativer Vorschlag erarbeitet, der von der folgenden Beobachtung ausgeht: Fay und Herriot (1979) haben ihr Modell als Verallgemeinerung des James-Stein-Schätzers motiviert, wobei sie sich einen empirischen Bayes-Ansatz zunutze machen. Wir greifen diese Motivation des Problems auf und formulieren ein analoges robustes Bayes'sches Verfahren. Wählt man nun in der robusten Bayes'schen Problemformulierung die ungünstigste Verteilung (engl. least favorable distribution) von Huber (1964, Ann. Math. Statist.) als A-priori-Verteilung für die Lokationswerte der Small Areas, dann resultiert als Bayes-Schätzer [=Schätzer mit dem kleinsten Bayes-Risk] die Limited-Translation-Rule (LTR) von Efron und Morris (1971, J. Amer. Statist. Assoc.). Im Kontext der frequentistischen Statistik kann die Limited-Translation-Rule nicht verwendet werden, weil sie (als Bayes-Schätzer) auf unbekannten Parametern beruht. Die unbekannten Parameter können jedoch nach dem empirischen Bayes-Ansatz an der Randverteilung der abhängigen Variablen geschätzt werden. Hierbei gilt es zu beachten (und dies wurde in der Literatur vernachlässigt), dass die Randverteilung unter der ungünstigsten A-priori-Verteilung nicht einer Normalverteilung entspricht, sondern durch die ungünstigste Verteilung nach Huber (1964) beschrieben wird. Es ist nun nicht weiter erstaunlich, dass es sich bei den Maximum-Likelihood-Schätzern von Regressionskoeffizienten und Modellvarianz unter der Randverteilung um M-Schätzer mit der Huber'schen psi-Funktion handelt.
Unsere theoriegeleitete Herleitung von robusten Schätzern zum Fay-Herriot-Modell zeigt auf, dass bei kontaminierten Daten die geschätzte LTR (mit Parameterschätzungen nach der M-Schätzmethodik) optimal ist und, dass die LTR ein integraler Bestandteil der Schätzmethodik ist (und nicht als ``Zusatz'' o.Ä. zu betrachten ist, wie dies andernorts getan wird). Die vorgeschlagenen M-Schätzer sind robust bei Vorliegen von atypischen Small Areas (Ausreissern), wie dies auch die Simulations- und Fallstudien zeigen. Um auch Robustheit bei Vorkommen von einflussreichen Beobachtungen in den unabhängigen Variablen zu erzielen, wurden verallgemeinerte M-Schätzer (engl. generalized M-estimator) für das Fay-Herriot-Modell entwickelt.

This doctoral thesis examines intergenerational knowledge, its antecedents as well as how participation in intergenerational knowledge transfer is related to the performance evaluation of employees. To answer these questions, this doctoral thesis builds on a literature review and quantitative research methods. A systematic literature study shows that empirical evidence on intergenerational knowledge transfer is limited. Building on prior literature, effects of various antecedents at the interpersonal and organizational level regarding their effects on intergenerational and intragenerational knowledge transfer are postulated. By questioning 444 trainees and trainers, this doctoral thesis also demonstrates that interpersonal antecedents impact how trainees participate in intergenerational knowledge transfer with their trainers. Thereby, the results of this study provide support that interpersonal antecedents are relevant for intergenerational knowledge transfer, yet, also emphasize the implications attached to the assigned roles in knowledge transfer (i.e., whether one is a trainee or trainer). Moreover, the results of an experimental vignette study reveal that participation in intergenerational knowledge transfer is linked to the performance evaluation of employees, yet, is susceptible to whether the employee is sharing or seeking knowledge. Overall, this doctoral thesis provides insights into this topic by covering a multitude of antecedents of intergenerational knowledge transfer, as well as how participation in intergenerational knowledge transfer may be associated with the performance evaluation of employees.

In order to classify smooth foliated manifolds, which are smooth maifolds equipped with a smooth foliation, we introduce the de Rham cohomologies of smooth foliated manifolds. These cohomologies are build in a similar way as the de Rham cohomologies of smooth manifolds. We develop some tools to compute these cohomologies. For example we proof a Mayer Vietoris theorem for foliated de Rham cohomology and show that these cohomologys are invariant under integrable homotopy. A generalization of a known Künneth formula, which relates the cohomologies of a product foliation with its factors, is discussed. In particular, this envolves a splitting theory of sequences between Frechet spaces and a theory of projective spectrums. We also prove, that the foliated de Rham cohomology is isomorphic to the Cech-de Rham cohomology and the Cech cohomology of leafwise constant functions of an underlying so called good cover.

Coastal erosion describes the displacement of land caused by destructive sea waves,
currents or tides. Due to the global climate change and associated phenomena such as
melting polar ice caps and changing current patterns of the oceans, which result in rising
sea levels or increased current velocities, the need for countermeasures is continuously
increasing. Today, major efforts have been made to mitigate these effects using groins,
breakwaters and various other structures.
This thesis will find a novel approach to address this problem by applying shape optimization
on the obstacles. Due to this reason, results of this thesis always contain the
following three distinct aspects:
The selected wave propagation model, i.e. the modeling of wave propagation towards
the coastline, using various wave formulations, ranging from steady to unsteady descriptions,
described from the Lagrangian or Eulerian viewpoint with all its specialties. More
precisely, in the Eulerian setting is first a steady Helmholtz equation in the form of a
scattering problem investigated and followed subsequently by shallow water equations,
in classical form, equipped with porosity, sediment portability and further subtleties.
Secondly, in a Lagrangian framework the Lagrangian shallow water equations form the
center of interest.
The chosen discretization, i.e. dependent on the nature and peculiarity of the constraining
partial differential equation, we choose between finite elements in conjunction
with a continuous Galerkin and discontinuous Galerkin method for investigations in the
Eulerian description. In addition, the Lagrangian viewpoint offers itself for mesh-free,
particle-based discretizations, where smoothed particle hydrodynamics are used.
The method for shape optimization w.r.t. the obstacle’s shape over an appropriate
cost function, constrained by the solution of the selected wave-propagation model. In
this sense, we rely on a differentiate-then-discretize approach for free-form shape optimization
in the Eulerian set-up, and reverse the order in Lagrangian computations.

The dissertation deals with methods to improve design-based and model-assisted estimation techniques for surveys in a finite population framework. The focus is on the development of the statistical methodology as well as their implementation by means of tailor-made numerical optimization strategies. In that regard, the developed methods aim at computing statistics for several potentially conflicting variables of interest at aggregated and disaggregated levels of the population on the basis of one single survey. The work can be divided into two main research questions, which are briefly explained in the following sections.
First, an optimal multivariate allocation method is developed taking into account several stratification levels. This approach results in a multi-objective optimization problem due to the simultaneous consideration of several variables of interest. In preparation for the numerical solution, several scalarization and standardization techniques are presented, which represent the different preferences of potential users. In addition, it is shown that by solving the problem scalarized with a weighted sum for all combinations of weights, the entire Pareto frontier of the original problem can be generated. By exploiting the special structure of the problem, the scalarized problems can be efficiently solved by a semismooth Newton method. In order to apply this numerical method to other scalarization techniques as well, an alternative approach is suggested, which traces the problem back to the weighted sum case. To address regional estimation quality requirements at multiple stratification levels, the potential use of upper bounds for regional variances is integrated into the method. In addition to restrictions on regional estimates, the method enables the consideration of box-constraints for the stratum-specific sample sizes, allowing minimum and maximum stratum-specific sampling fractions to be defined.
In addition to the allocation method, a generalized calibration method is developed, which is supposed to achieve coherent and efficient estimates at different stratification levels. The developed calibration method takes into account a very large number of benchmarks at different stratification levels, which may be obtained from different sources such as registers, paradata or other surveys using different estimation techniques. In order to incorporate the heterogeneous quality and the multitude of benchmarks, a relaxation of selected benchmarks is proposed. In that regard, predefined tolerances are assigned to problematic benchmarks at low aggregation levels in order to avoid an exact fulfillment. In addition, the generalized calibration method allows the use of box-constraints for the correction weights in order to avoid an extremely high variation of the weights. Furthermore, a variance estimation by means of a rescaling bootstrap is presented.
Both developed methods are analyzed and compared with existing methods in extensive simulation studies on the basis of a realistic synthetic data set of all households in Germany. Due to the similar requirements and objectives, both methods can be successively applied to a single survey in order to combine their efficiency advantages. In addition, both methods can be solved in a time-efficient manner using very comparable optimization approaches. These are based on transformations of the optimality conditions. The dimension of the resulting system of equations is ultimately independent of the dimension of the original problem, which enables the application even for very large problem instances.

In vielen Branchen und vor allem in großen Unternehmen gehört eine Unterstützung von Geschäftsprozessen durch Workﬂow-Management-Systeme zum gelebten Alltag. Im Zentrum steht dabei die Steuerung kontrollﬂussorientierter Abläufe, während Prozesse mit einem Schwerpunkt auf Daten, Informationen und Wissen meist außen vor bleiben. Solche wissensintensive Prozesse (engl.: knowledge intensive processes) (KiPs) sind Untersuchungsgegenstand in vielen aktuellen Studien, welche ein derzeit aktives Forschungsgebiet formen.
Im Vordergrund solcher KiPs steht dabei das durch die mitwirkenden Personen eingebrachte Wissen, welches in einem wesentlichen Maß die Prozessausführung beeinﬂusst, hierdurch jedoch die Bearbeitung komplexer und meist hoch volatiler Prozesse ermöglicht. Hierbei handelt es sich zumeist um entscheidungsintensive Prozesse, Prozesse zur Wissensakquisition oder Prozesse, die zu einer Vielzahl unterschiedlicher Prozessabläufe führen können.
Im Rahmen dieser Arbeit wird ein Ansatz entwickelt und vorgestellt, der sich der Modellierung, Visualisierung und Ausführung wissensintensiver Prozesse unter Verwendung Semantischer Technologien widmet. Hierzu werden als die zentralen Anforderungen zur Ausführung von KiPs Flexibilität, Adaptivität und Zielorientierung deﬁniert. Daran anknüpfend werden drei zentrale Grundprinzipien der Prozessmodellierung identiﬁziert, welche in der ersten Forschungsfrage aufgegriﬀen werden: „Können die drei Grundprinzipien in einem einheitlichen datenzentrierten, deklarativen, semantischen Ansatz (welcher mit ODD-BP bezeichnet wird) kombiniert werden und können damit die zentralen Anforderungen von KiPs erfüllt werden?”
Die Grundlage für ODD-BP bildet ein Metamodell, welches als Sprachkonstrukt fungiert und die Deﬁnition der angestrebten Prozessmodelle erlaubt. Darauf aufbauend wird mit Hilfe von Inferenzierungsregeln ein Verfahren entwickelt, welches das Schlussfolgern von Prozesszuständen ermöglicht und somit eine klassische Workﬂow-Engine überﬂüssig macht. Zudem wird eine Methodik eingeführt, die für jede in einem Prozess mitwirkende Person eine maßgeschneiderte, adaptive Prozessvisualisierung ermöglicht, um neben dem Freiheitsgrad der Flexibilität auch eine fundierte Prozessunterstützung bei der Ausführung von KiPs leisten zu können. All dies erfolgt innerhalb einer einheitlichen Wissensbasis, die zum einen die Grundlage für eine vollständige semantische Prozessmodellierung bildet und zum anderen die Möglichkeit zur Integration von Expertenwissen eröﬀnet. Dieses Expertenwissen kann einen expliziten Beitrag bei der Ausführung wissensintensiver Prozesse leisten und somit die Kollaboration von Mensch und Maschine durch Technologien der symbolischen KI ermöglichen. Die zweite Forschungsfrage greift diesen Aspekt auf: „Kann in dem ODD-BP Ansatz ontologisches Wissen so integriert werden, dass dieses in einer Prozessausführung einen Beitrag leistet?”
Das Metamodell sowie die entwickelten Methoden und Verfahren werden in einem prototypischen, generischen System realisiert, welches grundsätzlich für alle Anwendungsgebiete mit KiPs geeignet ist. Zur Validierung des ODD-BP Ansatzes erfolgt eine Ausrichtung auf den Anwendungsfall einer Notrufabfrage aus dem Leitstellenumfeld. Im Zuge der Evaluation wird gezeigt, wie dieser wissensintensive Ablauf von einer ﬂexiblen, adaptiven und zielorientierten Prozessausführung proﬁtiert. Darüber hinaus wird medizinisches Expertenwissen in den Prozessablauf integriert und es wird nachgewiesen, wie dieses zu verbesserten Prozessergebnissen beiträgt.
Wissensintensive Prozesse stellen Unternehmen und Organisationen in allen Branchen und Anwendungsfällen derzeit vor große Herausforderungen und die Wissenschaft und Forschung widmet sich der Suche nach praxistauglichen Lösungen. Diese Arbeit präsentiert mit ODD-BP einen vielversprechenden Ansatz, indem die Möglichkeiten Semantischer Technologien dazu genutzt werden, eine eng verzahnte Zusammenarbeit zwischen Mensch und Maschine bei der Ausführung von KiPs zu ermöglichen. Die zur Evaluation fokussierte Notrufabfrage innerhalb von Leitstellen stellt zudem einen höchst relevanten Anwendungsfall dar, da in einem akuten Notfall in kürzester Zeit Entscheidungen getroﬀen werden müssen, um weitreichenden Schaden abwenden und Leben retten zu können. Durch die Berücksichtigung umfassender Datenmengen und das Ausnutzen verfügbaren Expertenwissens kann so eine schnelle Lagebewertung mit Hilfe der maschinellen Unterstützung erreicht und der Mensch beim Treﬀen von richtigen Entscheidungen unterstützt werden.

Entrepreneurship has become an essential phenomenon all over the world because it is a major driving force behind the economic growth and development of a country. It is widely accepted that entrepreneurship development in a country creates new jobs, pro-motes healthy competition through innovation, and benefits the social well being of individuals and societies. The policymakers in both developed and developing countries focus on entrepreneurship because it helps to alleviate impediments to economic development and social welfare. Therefore, policymakers and academic researchers consider the promotion of entrepreneurship as essential for the economy and research-based support is needed for further development of entrepreneurship activities.
The impact of entrepreneurial activities on economic and social development also varies from country to country. The effect of entrepreneurial activities on economic and social development also varies from country to country because the level of entrepreneur-ship activities also varies from one region to another or one country to another. To under-stand these variations, policymakers have investigated the determinants of entrepreneur-ship at different levels, such as the individual, industry, and country levels. Moreover, entrepreneurship behavior is influenced by various personal and environmental level factors. However, these personal-level factors cannot be separated from the surrounding environment.
The link between religion and entrepreneurship is well established and can be traced back to Weber (1930). Researchers have analyzed the relationship between religion and entrepreneurship from various perspectives, and the research related to religion and entrepreneurship is diversified and scattered across disciplines. This dissertation tries to explain the link between religion and entrepreneurship, specifically Islamic religion and entrepreneurship. Technically this dissertation comprises three parts. The first part of this dissertation consists of two chapters that discuss the definition and theories of entrepreneurship (Chapter 2) and the theoretical relationship between religion and entrepreneur-ship (Chapter 3).
The second part of this dissertation (Chapter 4) provides an overview of the field with a purpose to gain a better understanding of the field’s current state of knowledge to bridge the different views and perspectives. In order to provide an overview of the field, a systematic literature search leading to a descriptive overview of the field based on 270 articles published in 163 journals Subsequently, bibliometric methods are used to identify thematic clusters, the most influential authors and articles, and how they are connected.
The third part of this dissertation (Chapter 5) empirically evaluates the influence of Islamic values and Islamic religious practices on entrepreneurship intentions within the Islamic community. Using the theory of planned behavior as a theoretical lens, we also take into account that the relationship between religion and entrepreneurial intentions can be mediated by individual’s attitude towards entrepreneurship. A self-administrative questionnaire was used to collect the responses from a sample of 1895 Pakistani university students. A structured equation modeling was adopted to perform a nuanced assessment of the relationship between Islamic values and practices and entrepreneurship intentions and to account for mediating effect of attitude towards entrepreneurship.
The research on religion and entrepreneurship has increased sharply during the last years and is scattered across various academic disciplines and fields. The analysis identifies and characterize the most important publications, journals, and authors in the area and map the analyzed religions and regions. The comprehensive overview of previous studies allows us to identify research gaps and derive avenues for future research in a substantiated way. Moreover, this dissertation helps the research scholars to understand the field in its entirety, identify relevant articles, and to uncover parallels and differences across religions and regions. Besides, the study reveals a lack of empirical research related to specific religions and specific regions. Therefore, scholars can take these regions and religions into consideration when conducting empirical research.
Furthermore, the empirical analysis about the influence of Islamic religious values and Islamic religious practices show that Islamic values served as a guiding principle in shaping people’s attitudes towards entrepreneurship in an Islamic community; they had an indirect influence on entrepreneurship intention through attitude. Similarly, the relationship between Islamic religious practices and the entrepreneurship intentions of students was fully mediated by the attitude towards entrepreneurship. Furthermore, this dissertation contributes to prior research on entrepreneurship in Islamic communities by applying a more fine-grained approach to capture the link between religion and entrepreneurship. Moreover, it contributes to the literature on entrepreneurship intentions by showing that the influence of religion on entrepreneurship intentions is mainly due to religious values and practices, which shape the attitude towards entrepreneurship and thereby influence entrepreneurship intentions in religious communities. The entrepreneur-ship research has put a higher emphasis on assessing the influence of a diverse set of con-textual factors. This dissertation introduces Islamic values and Islamic religious practices as critical contextual factors that shape entrepreneurship in countries that are characterized by the Islamic religion.

This thesis sheds light on the heterogeneous hedging behavior of airlines. The focus lies on ﬁnancial hedging, operational hedging and selective hedging. The unbalanced panel data set includes 74 airlines from 39 countries. The period of analysis is 2005 until 2014, resulting in 621 ﬁrm years. The random effects probit and ﬁxed effects OLS models provide strong evidence of a convex relation between derivative usage and a ﬁrm’s leverage, opposing the existing ﬁnancial distress theory. Airlines with lower leverage had higher hedge ratios. In addition, the results show that airlines with interest rate and currency derivatives were more likely to engage in fuel price hedging. Moreover, the study results support the argument that operational hedging is a complement to ﬁnancial hedging. Airlines with more heterogeneous ﬂeet structures exhibited higher hedge ratios.
Also, airlines which were members of a strategic alliance were more likely to be hedging airlines. As alliance airlines are rather ﬁnancially sound airlines, the positive relation between alliance membership and hedging reﬂects the negative results on the leverage
ratio. Lastly, the study presents determinants of an airlines’ selective hedging behavior. Airlines with prior-period derivative losses, recognized in income, changed their hedge portfolios more frequently. Moreover, the sample airlines acted in accordance with herd behavior theory. Changes in the regional hedge portfolios inﬂuenced the hedge portfolio of the individual airline in the same direction.