The subject of this thesis is hypercyclic, mixing, and chaotic C0-semigroups on Banach spaces. After introducing the relevant notions and giving some examples the so called hypercyclicity criterion and its relation with weak mixing is treated. Some new equivalent formulations of the criterion are given which are used to derive a very short proof of the well-known fact that a C0-semigroup is weakly mixing if and only if each of its operators is. Moreover, it is proved that under some "regularity conditions" each hypercyclic C0-semigroup is weakly mixing. Furthermore, it is shown that for a hypercyclic C0-semigroup there is always a dense set of hypercyclic vectors having infinitely differentiable trajectories. Chaotic C0-semigroups are also considered. It is proved that they are always weakly mixing and that in certain cases chaoticity is already implied by the existence of a single periodic point. Moreover, it is shown that strongly elliptic differential operators on bounded C^1-domains never generate chaotic C0-semigroups. A thorough investigation of transitivity, weak mixing, and mixing of weighted compositioin operators follows and complete characterisations of these properties are derived. These results are then used to completely characterise hypercyclicity, weak mixing, and mixing of C0-semigroups generated by first order partial differential operators. Moreover, a characterisation of chaos for these C0-semigroups is attained. All these results are achieved on spaces of p-integrable functions as well as on spaces of continuous functions and illustrated by various concrete examples.
The main topic of this treatise is the solution of two problems from the general theory of linear partial differential equations with constant coefficients. While surjectivity criteria for linear partial differential operators in spaces of smooth functions over an open subset of euclidean space and distributions were proved by B. Malgrange and L. Hörmander in 1955, respectively 1962, concrete evaluation of these criteria is still a highly non-trivial task. In particular, it is well-known that surjectivity in the space of smooth functions over an open subset of euclidean space does not automatically imply surjectivity in the space of distributions. Though, examples for this fact all live in three or higher dimensions. In 1966, F. Trèves conjectured that in the two dimensional setting surjectivity of a linear partial differential operator on the smooth functions indeed implies surjectivity on the space of distributions. An affirmative solution to this problem is presented in this treatise. The second main result solves the so-called problem of (distributional) parameter dependence for solutions of linear partial differential equations with constant coefficients posed by J. Bonet and P. Domanski in 2006. It is shown that, in dimensions three or higher, this problem in general has a negative solution even for hypoelliptic operators. Moreover, it is proved that the two dimensional case is again an exception, because in this setting the problem of parameter dependence always has a positive solution.