Refine
Year of publication
- 2012 (1) (remove)
Keywords
- Distribution <Funktionalanalysis> (1)
- Hypoelliptischer Operator (1)
- Lineare Funktionalanalysis (1)
- Linearer partieller Differentialoperator (1)
- P-Konvexität für Träger (1)
- P-Konvexität für singuläre Träger (1)
- P-convexity for singular supports (1)
- P-convexity for supports (1)
- Parameter dependence of solutions of linear partial differential equations (1)
- Parameterabhängige Lösungen linearer partieller Differentialgeichungen (1)
The main topic of this treatise is the solution of two problems from the general theory of linear partial differential equations with constant coefficients. While surjectivity criteria for linear partial differential operators in spaces of smooth functions over an open subset of euclidean space and distributions were proved by B. Malgrange and L. Hörmander in 1955, respectively 1962, concrete evaluation of these criteria is still a highly non-trivial task. In particular, it is well-known that surjectivity in the space of smooth functions over an open subset of euclidean space does not automatically imply surjectivity in the space of distributions. Though, examples for this fact all live in three or higher dimensions. In 1966, F. Trèves conjectured that in the two dimensional setting surjectivity of a linear partial differential operator on the smooth functions indeed implies surjectivity on the space of distributions. An affirmative solution to this problem is presented in this treatise. The second main result solves the so-called problem of (distributional) parameter dependence for solutions of linear partial differential equations with constant coefficients posed by J. Bonet and P. Domanski in 2006. It is shown that, in dimensions three or higher, this problem in general has a negative solution even for hypoelliptic operators. Moreover, it is proved that the two dimensional case is again an exception, because in this setting the problem of parameter dependence always has a positive solution.