Refine
Keywords
- Adaptation (1)
- Amazonas-Gebiet (1)
- Anatolien / Süd (1)
- Anpassung (1)
- Anthropogene Klimaänderung (1)
- Anura (1)
- Aquatisches Ökosystem (1)
- Environment (1)
- Evolution (1)
- Feuchtwiese (1)
Introduction:In patients with common variable immunodeficiency (CVID),immunological response is compromised. Knowledge about COVID‐19 in CVIDpatients is sparse. We, here, synthesize current research addressing the level ofthreat COVID‐19posestoCVIDpatientsandthebest‐known treatments.
Method:Review of 14 publications.
Results:The number of CVID patients with moderate to severe (~29%) andcritical infection courses (~10%), and the number of fatal cases (~13%), areincreased compared to the general picture of COVID‐19 infection. However,this might be an overestimate. Systematic cohort‐wide studies are lacking, andasymptomatic or mild cases among CVID patients occur that can easily remainunnoticed. Regular immunoglobulin replacement therapy was administered inalmost all patients, potentially explaining why the numbers of critical and fatalcases were not higher. In addition, the application of convalescent plasma wasdemonstrated to have positive effects.
Conclusions:COVID‐19 poses an elevated threat to CVID patients. However,only systematic studies can provide robust information on the extent of thisthreat. Regular immunoglobulin replacement therapy is beneficial to combatCOVID‐19 in CVID patients, and best treatment after infection includes theuse of convalescent plasma in addition to common medication.
Amphibian diversity in the Amazonian floating meadows: a Hanski core-satellite species system
(2021)
The Amazon catchment is the largest river basin on earth, and up to 30% of its waters flow across floodplains. In its open waters, floating plants known as floating meadows abound. They can act as vectors of dispersal for their associated fauna and, therefore, can be important for the spatial structure of communities. Here, we focus on amphibian diversity in the Amazonian floating meadows over large spatial scales. We recorded 50 amphibian species over 57 sites, covering around 7000 km along river courses. Using multi-site generalised dissimilarity modelling of zeta diversity, we tested Hanski's core-satellite hypothesis and identified the existence of two functional groups of species operating under different ecological processes in the floating meadows. ‘Core' species are associated with floating meadows, while ‘satellite' species are associated with adjacent environments, being only occasional or accidental occupants of the floating vegetation. At large scales, amphibian diversity in floating meadows is mostly determined by stochastic (i.e. random/neutral) processes, whereas at regional scales, climate and deterministic (i.e. niche-based) processes are central drivers. Compared with the turnover of ‘core' species, the turnover of ‘satellite' species increases much faster with distances and is also controlled by a wider range of climatic features. Distance is not a limiting factor for ‘core' species, suggesting that they have a stronger dispersal ability even over large distances. This is probably related to the existence of passive long-distance dispersal of individuals along rivers via vegetation rafts. In this sense, Amazonian rivers can facilitate dispersal, and this effect should be stronger for species associated with riverine habitats such as floating meadows.
Background
The morphology of anuran larvae is suggested to differ between species with tadpoles living in standing (lentic) and running (lotic) waters. To explore which character combinations within the general tadpole morphospace are associated with these habitats, we studied categorical and metric larval data of 123 (one third of which from lotic environments) Madagascan anurans.
Results
Using univariate and multivariate statistics, we found that certain combinations of fin height, body musculature and eye size prevail either in larvae from lentic or lotic environments.
Conclusion
Evidence for adaptation to lotic conditions in larvae of Madagascan anurans is presented. While lentic tadpoles typically show narrow to moderate oral discs, small to medium sized eyes, convex or moderately low fins and non-robust tail muscles, tadpoles from lotic environments typically show moderate to broad oral discs, medium to big sized eyes, low fins and a robust tail muscle.
Phylogeographic analyses point to long-term survival on the spot in micro-endemic Lycian salamanders
(2020)
Lycian salamanders (genus Lyciasalamandra) constitute an exceptional case of microendemism of an amphibian species on the Asian Minor mainland. These viviparous salamanders are confined to karstic limestone formations along the southern Anatolian coast and some islands. We here study the genetic differentiation within and among 118 populations of all seven Lyciasalamandra species across the entire genus’ distribution. Based on circa 900 base pairs of fragments of the mitochondrial 16SrDNA and ATPase genes, we analysed the spatial haplotype distribution as well as the genetic structure and demographic history of populations. We used 253 geo-referenced populations and CHELSA climate data to infer species distribution models which we projected on climatic conditions of the Last Glacial Maximum (LGM). Within all but one species, distinct phyloclades were identified, which only in parts matched current taxonomy. Most haplotypes (78%) were private to single populations. Sometimes population genetic parameters showed contradicting results, although in several cases they indicated recent population expansion of phyloclades. Climatic suitability of localities currently inhabited by salamanders was significantly lower during the LGM compared to recent climate. All data indicated a strong degree of isolation among Lyciasalamandra populations, even within phyloclades. Given the sometimes high degree of haplotype differentiation between adjacent populations, they must have survived periods of deteriorated climates during the Quaternary on the spot. However, the alternative explanation of male biased dispersal combined with a pronounced female philopatry can only be excluded if independent nuclear data confirm this result.
Climate change is expected to cause mountain species to shift their ranges to higher elevations. Due to the decreasing amounts of habitats with increasing elevation, such shifts are likely to increase their extinction risk. Heterogeneous mountain topography, however, may reduce this risk by providing microclimatic conditions that can buffer macroclimatic warming or provide nearby refugia. As aspect strongly influences the local microclimate, we here assess whether shifts from warm south-exposed aspects to cool north-exposed aspects in response to climate change can compensate for an upward shift into cooler elevations.