Refine
Keywords
- Höhlensalamander (4)
- Larve (2)
- Mageninhalt (2)
- Salamander (2)
- Salamanders (2)
- Adaptation (1)
- Anatolien / Süd (1)
- Animal behaviour (1)
- Anpassung (1)
- Anthropogene Klimaänderung (1)
Institute
The changing views on the evolutionary relationships of extant Salamandridae (Amphibia: Urodela)
(2018)
The phylogenetic relationships among members of the family Salamandridae have been repeatedly investigated over the last 90 years, with changing character and taxon sampling. We review the changing composition and the phylogenetic position of salamandrid genera and species groups and add a new phylogeny based exclusively on sequences of nuclear genes. Salamandrina often changed its position depending on the characters used. It was included several times in a clade together with the primitive newts (Echinotriton, Pleurodeles, Tylototriton) due to their seemingly ancestral morphology. The latter were often inferred as a monophyletic clade. Respective monophyly was almost consistently established in all molecular studies for true salamanders (Chioglossa, Lyciasalamandra, Mertensiella, Salamandra), modern Asian newts (Cynops, Laotriton, Pachytriton, Paramesotriton) and modern New World newts (Notophthalmus, Taricha). Reciprocal non-monophyly has been established through molecular studies for the European mountain newts (Calotriton, Euproctus) and the modern European newts (Ichthyosaura, Lissotriton, Neurergus, Ommatotriton, Triturus) since Calotriton was identified as the sister lineage of Triturus. In pre-molecular studies, their respective monophyly had almost always been assumed, mainly because a complex courtship behaviour shared by their respective members. Our nuclear tree is nearly identical to a mito-genomic tree, with all but one node being highly supported. The major difference concerns the position of Calotriton, which is no longer nested within the modern European newts. This has implications for the evolution of courtship behaviour of European newts. Within modern European newts, Ichthyosaura and Lissotriton changed their position compared to the mito-genomic tree. Previous molecular trees based on seemingly large nuclear data sets, but analysed together with mitochondrial data, did not reveal monophyly of modern European newts since taxon sampling and nuclear gene coverage was too poor to obtain conclusive results. We therefore conclude that mitochondrial and nuclear data should be analysed on their own.
Species can show strong variation of local abundance across their ranges. Recent analyses suggested that variation in abundance can be related to environmental suitability, as the highest abundances are often observed in populations living in the most suitable areas. However, there is limited information on the mechanisms through which variation in environmental suitability determines abundance. We analysed populations of the microendemic salamander Hydromantes flavus, and tested several hypotheses on potential relationships linking environmental suitability to population parameters. For multiple populations across the whole species range, we assessed suitability using species distribution models, and measured density, activity level, food intake and body condition index. In high-suitability sites, the density of salamanders was up to 30-times higher than in the least suitable ones. Variation in activity levels and population performance can explain such variation of abundance. In high-suitability sites, salamanders were active close to the surface, and showed a low frequency of empty stomachs. Furthermore, when taking into account seasonal variation, body condition was better in the most suitable sites. Our results show that the strong relationship between environmental suitability and population abundance can be mediated by the variation of parameters strongly linked to individual performance and fitness.
Background
The morphology of anuran larvae is suggested to differ between species with tadpoles living in standing (lentic) and running (lotic) waters. To explore which character combinations within the general tadpole morphospace are associated with these habitats, we studied categorical and metric larval data of 123 (one third of which from lotic environments) Madagascan anurans.
Results
Using univariate and multivariate statistics, we found that certain combinations of fin height, body musculature and eye size prevail either in larvae from lentic or lotic environments.
Conclusion
Evidence for adaptation to lotic conditions in larvae of Madagascan anurans is presented. While lentic tadpoles typically show narrow to moderate oral discs, small to medium sized eyes, convex or moderately low fins and non-robust tail muscles, tadpoles from lotic environments typically show moderate to broad oral discs, medium to big sized eyes, low fins and a robust tail muscle.
The availability of data on the feeding habits of species of conservation value may be of great importance to develop analyses for both scientific and management purposes. Stomach flushing is a harmless technique that allowed us to collect extensive data on the feeding habits of six Hydromantes species. Here, we present two datasets originating from a three-year study performed in multiple seasons (spring and autumn) on 19 different populations of cave salamanders. The first dataset contains data of the stomach content of 1,250 salamanders, where 6,010 items were recognized; the second one reports the size of the intact prey items found in the stomachs. These datasets integrate considerably data already available on the diet of the European plethodontid salamanders, being also of potential use for large scale meta-analyses on amphibian diet.
Phylogeographic analyses point to long-term survival on the spot in micro-endemic Lycian salamanders
(2020)
Lycian salamanders (genus Lyciasalamandra) constitute an exceptional case of microendemism of an amphibian species on the Asian Minor mainland. These viviparous salamanders are confined to karstic limestone formations along the southern Anatolian coast and some islands. We here study the genetic differentiation within and among 118 populations of all seven Lyciasalamandra species across the entire genus’ distribution. Based on circa 900 base pairs of fragments of the mitochondrial 16SrDNA and ATPase genes, we analysed the spatial haplotype distribution as well as the genetic structure and demographic history of populations. We used 253 geo-referenced populations and CHELSA climate data to infer species distribution models which we projected on climatic conditions of the Last Glacial Maximum (LGM). Within all but one species, distinct phyloclades were identified, which only in parts matched current taxonomy. Most haplotypes (78%) were private to single populations. Sometimes population genetic parameters showed contradicting results, although in several cases they indicated recent population expansion of phyloclades. Climatic suitability of localities currently inhabited by salamanders was significantly lower during the LGM compared to recent climate. All data indicated a strong degree of isolation among Lyciasalamandra populations, even within phyloclades. Given the sometimes high degree of haplotype differentiation between adjacent populations, they must have survived periods of deteriorated climates during the Quaternary on the spot. However, the alternative explanation of male biased dispersal combined with a pronounced female philopatry can only be excluded if independent nuclear data confirm this result.
The trophic niche is a life trait that identifies the consumer’s position in a local food web. Several factors, such as ontogeny, competitive ability and resource availability contribute in shaping species trophic niches. To date, information on the diet of European Hydromantes salamanders are only available for a limited number of species, no dietary studies have involved more than one species of the genus at a time, and there are limited evidences on how multiple factors interact in determining diet variation. In this study we examined the diet of multiple populations of six out of the eight European cave salamanders, providing the first data on the diet for five of them. In addition, we assessed whether these closely related generalist species show similar diet and, for each species, we tested whether season, age class or sex influence the number and the type of prey consumed. Stomach condition (empty/full) and the number of prey consumed were strongly related to seasonality and to the activity level of individuals. Empty stomachs were more frequent in autumn, in individuals far from cave entrance and in juveniles. Diet composition was significantly different among species. Hydromantes imperialis and H. supramontis were the most generalist species; H. flavus and H. sarrabusensis fed mostly on Hymenoptera and Coleoptera Staphylinidae, while H. genei and H. ambrosii mostly consumed Arachnida and Endopterygota larvae. Furthermore, we detected seasonal shifts of diet in the majority of the species examined. Conversely, within each species, we did not find diet differences between females, males and juveniles. Although being assumed to have very similar dietary habits, here Hydromantes species were shown to be characterized by a high divergence in diet composition and in the stomach condition of individuals.
Leeches can parasitize many vertebrate taxa. In amphibians, leech parasitism often has potential detrimental effects including population decline. Most of studies on the host-parasite interactions involving leeches and amphibians focus on freshwater environments, while they are very scarce for terrestrial amphibians. In this work, we studied the relationship between the leech Batracobdella algira and the European terrestrial salamanders of the genus Hydromantes, identifying environmental features related to the presence of the leeches and their possible effects on the hosts. We performed observation throughout Sardinia (Italy), covering the distribution area of all Hydromantes species endemic to this island. From September 2015 to May 2017, we conducted >150 surveys in 26 underground environments, collecting data on 2629 salamanders and 131 leeches. Water hardness was the only environmental feature correlated with the presence of B. algira, linking this leech to active karstic systems. Leeches were more frequently parasitizing salamanders with large body size. Body Condition Index was not significantly different between parasitized and non-parasitized salamanders. Our study shows the importance of abiotic environmental features for host-parasite interactions, and poses new questions on complex interspecific interactions between this ectoparasite and amphibians.
Climate change is expected to cause mountain species to shift their ranges to higher elevations. Due to the decreasing amounts of habitats with increasing elevation, such shifts are likely to increase their extinction risk. Heterogeneous mountain topography, however, may reduce this risk by providing microclimatic conditions that can buffer macroclimatic warming or provide nearby refugia. As aspect strongly influences the local microclimate, we here assess whether shifts from warm south-exposed aspects to cool north-exposed aspects in response to climate change can compensate for an upward shift into cooler elevations.
The larval stage of the European fire salamander (Salamandra salamandra) inhabits both lentic and lotic habitats. In the latter, they are constantly exposed to unidirectional water flow, which has been shown to cause downstream drift in a variety of taxa. In this study, a closed artificial creek, which allowed us to keep the water flow constant over time and, at the same time, to simulates with predefined water quantities and durations, was used to examine the individual movement patterns of marked larval fire salamanders exposed to unidirectional flow. Movements were tracked by marking the larvae with VIAlpha tags individually and by using downstream and upstream traps. Most individuals showed stationarity, while downstream drift dominated the overall movement pattern. Upstream movements were rare and occurred only on small distances of about 30 cm; downstream drift distances exceeded 10 m (until next downstream trap). The simulated flood events increased drift rates significantly, even several days after the flood simulation experiments. Drift probability increased with decreasing body size and decreasing nutritional status. Our results support the production hypothesis as an explanation for the movements of European fire salamander larvae within creeks.