Psychologie
Refine
Year of publication
Document Type
- Doctoral Thesis (10)
- Article (1)
Keywords
- Cortisol (11) (remove)
Acute social and physical stress interact to influence social behavior: the role of social anxiety
(2018)
Stress is proven to have detrimental effects on physical and mental health. Due to different tasks and study designs, the direct consequences of acute stress have been found to be wide-reaching: while some studies report prosocial effects, others report increases in antisocial behavior, still others report no effect. To control for specific effects of different stressors and to consider the role of social anxiety in stress-related social behavior, we investigated the effects of social versus physical stress on behavior in male participants possessing different levels of social anxiety. In a randomized, controlled two by two design we investigated the impact of social and physical stress on behavior in healthy young men. We found significant influences on various subjective increases in stress by physical and social stress, but no interaction effect. Cortisol was significantly increased by physical stress, and the heart rate was modulated by physical and social stress as well as their combination. Social anxiety modulated the subjective stress response but not the cortisol or heart rate response. With respect to behavior, our results show that social and physical stress interacted to modulate trust, trustworthiness, and sharing. While social stress and physical stress alone reduced prosocial behavior, a combination of the two stressor modalities could restore prosociality. Social stress alone reduced nonsocial risk behavior regardless of physical stress. Social anxiety was associated with higher subjective stress responses and higher levels of trust. As a consequence, future studies will need to investigate further various stressors and clarify their effects on social behavior in health and social anxiety disorders.
Interaction between the Hypothalamic-Pituitary-Adrenal Axis and the Circadian Clock System in Humans
(2017)
Rotation of the Earth creates day and night cycles of 24 h. The endogenous circadian clocks sense these light/dark rhythms and the master pacemaker situated in the suprachiasmatic nucleus of the hypothalamus entrains the physical activities according to this information. The circadian machinery is built from the transcriptional/translational feedback loops generating the oscillations in all nucleated cells of the body. In addition, unexpected environmental changes, called stressors, also challenge living systems. A response to these stimuli is provided immediately via the autonomic-nervous system and slowly via the hypothalamus"pituitary"adrenal (HPA) axis. When the HPA axis is activated, circulating glucocorticoids are elevated and regulate organ activities in order to maintain survival of the organism. Both the clock and the stress systems are essential for continuity and interact with each other to keep internal homeostasis. The physiological interactions between the HPA axis and the circadian clock system are mainly addressed in animal studies, which focus on the effects of stress and circadian disturbances on cardiovascular, psychiatric and metabolic disorders. Although these studies give opportunity to test in whole body, apply unwelcome techniques, control and manipulate the parameters at the high level, generalization of the results to humans is still a debate. On the other hand, studies established with cell lines cannot really reflect the conditions occurring in a living organism. Thus, human studies are absolutely necessary to investigate mechanisms involved in stress and circadian responses. The studies presented in this thesis were intended to determine the effects of cortisol as an end-product of the HPA axis on PERIOD (PER1, PER2 and PER3) transcripts as circadian clock genes in healthy humans. The expression levels of PERIOD genes were measured under baseline conditions and after stress in whole blood. The results demonstrated here have given better understanding of transcriptional programming regulated by pulsatile cortisol at standard conditions and short-term effects of cortisol increase on circadian clocks after acute stress. These findings also draw attention to inter-individual variations in stress response as well as non-circadian functions of PERIOD genes in the periphery, which need to be examined in details in the future.
Phase-amplitude cross-frequency coupling is a mechanism thought to facilitate communication between neuronal ensembles. The mechanism could underlie the implementation of complex cognitive processes, like executive functions, in the brain. This thesis contributes to answering the question, whether phase-amplitude cross-frequency coupling - assessed via electroencephalography (EEG) - is a mechanism by which executive functioning is implemented in the brain and whether an assumed performance effect of stress on executive functioning is reflected in phase-amplitude coupling strength. A huge body of studies shows that stress can influence executive functioning, in essence having detrimental effects. In two independent studies, each being comprised of two core executive function tasks (flexibility and behavioural inhibition as well as cognitive inhibition and working memory), beta-gamma phase-amplitude coupling was robustly detected in the left and right prefrontal hemispheres. No systematic pattern of coupling strength modulation by either task demands or acute stress was detected. Beta-gamma coupling might also be present in more basic attention processes. This is the first investigation of the relationship between stress, executive functions and phase-amplitude coupling. Therefore, many aspects have not been explored yet. For example, studying phase precision instead of coupling strength as an indicator for phase-amplitude coupling modulations. Furthermore, data was analysed in source space (independent component analysis); comparability to sensor space has still to be determined. These as well as other aspects should be investigated, due to the promising finding of very robust and strong beta-gamma coupling for all executive functions. Additionally, this thesis tested the performance of two widely used phase-amplitude coupling measures (mean vector length and modulation index). Both measures are specific and sensitive to coupling strength and coupling width. The simulation study also drew attention to several confounding factors, which influence phase-amplitude coupling measures (e. g. data length, multimodality).
Ausgehend von einem multifaktoriellen biopsychosozialen Modell zur Entstehung und Aufrechterhaltung primärer Kopfschmerzen bei Kindern und Jugendlichen wurden n= 170 Mädchen im Alter von 12-17 Jahren hinsichtlich verschiedener stressbezogener Determinanten untersucht. Es wurde davon ausgegangen, dass sich Mädchen mit wiederkehrenden Kopfschmerzen sowohl in einem kontrollierten, messwiederholten Laborexperiment hinsichtlich ihrer physiologischen Reaktionen (Muskelspannung, Cortisolausschüttung) auf akuten Stress hin wie auch in der Cortisolaufwachreaktion im häuslichen Setting von einer gesunden Kontrollgruppe unterscheiden. Diese Annahmen konnten nach statistischer Auswertung der Studienergebnisse unter Kontrolle der familiären Schmerzbelastung und psychischen Stressbelastung jedoch nicht bestätigt werden. Somit kann nicht von einer dysregulierten Aktivität der Hypothalamus-Hypophysen-Nebennierenrinden-Achse ausgegangen werden, die eine zentrale Rolle in der biologischen Stressantwort spielt und auch die Schmerzverarbeitung mit beeinflusst. Ebenso wenig liegt bei Mädchen mit Kopfschmerzen eine erhöhte basale oder stressbedingte Muskelspannung im Kopf- und Schulterbereich vor. Lediglich auf subjektiver Ebene deutete sich ein tendenziell höheres Empfinden von Anspannung in Ruhephasen an. Auf psychologischer Ebene hingegen zeigte sich erwartungskonform eine höhere Stress-vulnerabilität bei den Mädchen mit Kopfschmerzen. Außerdem wurde bei ihnen der vermehrte Einsatz emotionsregulierender Stressbewältigungsstrategien, wie Ruhe und Entspannung, aber auch destruktiv-ärgerbezogenes Verhalten und Denken, bezogen auf soziale und leistungsbezogene Stresssituationen beobachtet. Auch unterschieden sie sich hinsichtlich der familiären Schmerzbelastung, körperlichen und psychischen Stress-symptomatik und Depressivität sowie Ängstlichkeit von der Kontrollgruppe. Sie zeigten durchweg höhere Ausprägungen auf diesen Variablen, die sich als signifikante Prädiktoren für Kopfschmerzen herausstellten. Die Verknüpfung von physiologischen Reaktionsmaßen mit der Stressverarbeitung zeigte, dass die Nutzung von konstruktiv-palliativer Emotionsregulation umso stärker ist, je höher der stressbedingte Anstieg der Cortisolausschüttung und der Muskelaktivität in der Frontalisregion ausfällt. Je stärker also die körperliche Reaktion auf Stress, umso mehr versuchen jugendliche Mädchen sich zu entspannen und auszuruhen.
The last decades of stress research have yielded substantial advancements highlighting the importance of the phenomenon for basic psychological functions as well as physical health and well-being. Progress in stress research heavily relies on the availability of suitable and well validated laboratory stressors. Appropriate laboratory stressors need to be able to reliably provoke a response in the relevant parameters and be applicable in different research settings or experimental designs. This thesis focuses on the Cold Pressor Test (CPT) as a stress induction technique. Three published experiments are presented that show how the advantages of the CPT can be used to test stress effects on memory processes and how some of its disadvantages can be met by a simple modification that retains its feasibility and validity. The first experiment applies the CPT in a substantial sample to investigate the consolidation effects of post-learning sympathetic arousal. Stressed participants with high increases in heart rate during the CPT showed enhanced memory performance one day after learning compared to both the warm water control group and low heart rate responders. This finding suggests that beta-adrenergic activation elicited shortly after learning enhances memory consolidation and that the CPT induced heart rate response is a predictor for this effect. Moreover, the CPT proved to be an appropriate stressor to test hypothesis about endogenous adrenergic effects on memory processes. The second experiment addresses known practical limitations of the standard dominant hand CPT protocol. A bilateral feet CPT modification is presented, the elicited neuroendocrine stress response assessed and validated against the standard CPT in a within-subjects design. The bilateral feet CPT elicited a substantial neuroendocrine stress response. Moreover, with the exception of blood pressure responses, all stress parameters were enhanced compared to the standard CPT. This shows that the bilateral feet CPT is a valid alternative to the standard CPT. The third experiment further validates the bilateral feet CPT and its corresponding control procedure by employing it in a typical application scenario. Specifically, the bilateral feet CPT was used to modulate retrieval of event files in a distractor-response binding paradigm that required lateralized bimanual responses. Again, the bilateral feet CPT induced significant increases in heart rate, blood pressure and cortisol, no such increases could be observed in the warm water control condition. Moreover, stressed participants showed diminished retrieval compared to controls. These results provide further evidence for the feasibility and validity of the bilateral feet CPT and its warm water control procedure. Together the experiments presented here highlight the usefulness of the CPT as a tool in psychophysiological stress research. It is especially well suited to test hypothesis concerning stress effects on memory processes and its applicability can be further increased by the bilateral feet modification.
Stress has been considered one of the most relevant factors promoting aggressive behavior. Animal and human pharmacological studies revealed the stress hormones corticosterone in rodents and cortisol in humans to constitute a particularly important neuroendocrine determinate in facilitating aggression and beyond that, assumedly in its continuation and escalation. Moreover, cortisol-induced alterations of social information processing, as well as of cognitive control processes, have been hypothesized as possible influencing factors in the stress-aggression link. So far, the immediate impact of a preceding stressor and thereby stress-induced rise of cortisol on aggressive behavior as well as higher-order cognitive control processes and social information processing in this context have gone mostly unheeded. The present thesis aimed to extend the hitherto findings of stress and aggression in this regard. For this purpose two psychophysiological studies with healthy adults were carried out, both using the socially evaluated-cold pressor test as an acute stress induction. Additionally to behavioral data and subjective reports, event related potentials were measured and acute levels of salivary cortisol were collected on the basis of which stressed participants were divided into cortisol-responders and "nonresponders. Study 1 examined the impact of acute stress-induced cortisol increase on inhibitory control and its neural correlates. 41 male participants were randomly assigned to the stress procedure or to a non-stressful control condition. Beforehand and afterwards, participants performed a Go Nogo task with visual letters to measure response inhibition. The effect of acute stress-induced cortisol increase on covert and overt aggressive behavior and on the processing of provoking stimuli within the aggressive encounter was investigated in study 2. Moreover, this experiment examined the combined impact of stress and aggression on ensuing affective information processing. 71 male and female participants were either exposed to the stress or to the control condition. Following this, half of each group received high or low levels of provocation during the Taylor Aggression Paradigm. At the end of the experiment, a passive viewing paradigm with affective pictures depicting positive, negative, or aggressive scenes with either humans or objects was realized. The results revealed that men were not affected by a stress-induced rise in cortisol on a behavioral level, showing neither impaired response inhibition nor enhanced aggressive behavior. In contrast, women showed enhanced overt and covert aggressive behavior under a surge of endogenous cortisol, confirming previous results, albeit only in case of high provocation and only up to the level of the control group. Unlike this rather moderate impact on behavior, cortisol showed a distinct impact on neural correlates of information processing throughout inhibitory control, aggression-eliciting stimuli, and emotional pictures for both men and women. At this, stress-induced increase of cortisol resulted in enhanced N2 amplitudes to Go stimuli, whereas P2 amplitudes to both and N2 to Nogo amplitudes retained unchanged, indicating an overcorrection and caution of the response activation in favor of successful inhibitory control. The processing of aggression-eliciting stimuli during the aggressive encounter was complexly altered by stress differently for women and men. Under increased cortisol levels, the frontal or parietal P3 amplitude patterns were either diminished or reversed in the case of high provocation compared to the control group and to cortisol-nonresponders, indicating a desensitization towards aggression-eliciting stimuli in males, but a more elaborate processing of those in women. Moreover, stress-induced cortisol and provocation jointly altered subsequent affective information processing at early as well as later stages of the information processing stream. Again, increased levels of cortisol led opposite directed amplitudes in the case of high provocation relative to the control group and cortisol-nonresponders, with enhanced N2 amplitudes in men and reduced P3 and LPP amplitudes in men and women for all affective pictures, suggesting initially enhanced emotional reactivity in men, but ensuing reduced motivational attention and enhanced emotion regulation in both, men and women. As a result, these present findings confirm the relevance of HPA activity in the elicitation and persistence of human aggressive behavior. Moreover, they reveal the significance of compensatory and emotion regulatory strategies and mechanisms in response to stress and provocation, indorsing the relevance of social information and cognitive control processes. Still, more research is needed to clarify the conditions which lead to the facilitation of aggression and by which compensatory mechanisms this is prevented.
The present thesis addresses the validity of Binge Eating Disorder (BED) as well as underlying mechanisms of BED from three different angles. Three studies provide data discriminating obesity with BED from obesity without BED. Study 1 demonstrates differences between obese individuals with and without BED regarding eating in the natural environment, psychiatric comorbidity, negative affect as well as self reported tendencies in eating behavior. Evidence for possible psychological mechanisms explaining increased intake of BED individuals in the natural environment was given by analyzing associations of negative affect, emotional eating, restrained eating and caloric intake in obese BED compared to NBED controls. Study 2 demonstrated stress-induced changes in the eating behavior of obese individuals with BED. The impact of a psychosocial stressor, the Trier Social Stress Test (TSST, Kirschbaum, Pirke, & Hellhammer, 1993), on behavioral patterns of eating behavior in laboratory was investigated. Special attention was given to stress-induced changes in variables that reflect mechanisms of appetite regulation in obese BED individuals compared to controls. To further explore by which mechanisms stress might trigger binge eating, study 3 investigated differences in stress-induced cortisol secretion after a socially evaluated cold pressure test (SECPT, Schwabe, Haddad, & Schachinger, 2008) in obese BED as compared to obese NBED individuals.
The stress hormone cortisol as the end-product of the hypothalamic-pituitary-adrenal (HPA) axis has been found to play a crucial role in the release of aggressive behavior (Kruk et al., 2004; Böhnke et al., 2010). In order to further explore potential mechanisms underlying the relationship between stress and aggression, such as changes in (social) information processing, we conducted two experimental studies that are presented in this thesis. In both studies, acute stress was induced by means of the Socially Evaluated Cold Pressor Test (SECP) designed by Schwabe et al. (2008). Stressed participants were classified as either cortisol responders or nonresponders depending on their rise in cortisol following the stressor. Moreover, basal HPA axis activity was measured prior to the experimental sessions and EEG was recorded throughout the experiments. The first study dealt with the influence of acute stress on cognitive control processes. 41 healthy male participants were assigned to either the stress condition or the non-stressful control procedure of the SECP. Before as well as after the stress induction, all participants performed a cued task-switching paradigm in order to measure cognitive control processes. Results revealed a significant influence of acute and basal cortisol levels, respectively, on the motor preparation of the upcoming behavioral response, that was reflected in changes in the magnitude of the terminal Contingent Negative Variation (CNV). In the second study, the effect of acute stress and subsequent social provocation on approach-avoidance motivation was examined. 72 healthy students (36 males, 36 females) took part in the study. They performed an approach-avoidance task, using emotional facial expressions as stimuli, before as well as after the experimental manipulation of acute stress (again via the SECP) and social provocation realized by means of the Taylor Aggression Paradigm (Taylor, 1967). Additionally to salivary cortisol, testosterone samples were collected at several points in time during the experimental session. Results indicated a positive relationship between acute testosterone levels and the motivation to approach social threat stimuli in highly provoked cortisol responders. Similar results were found when the testosterone-to-cortisol ratio at baseline was taken into account instead of acute testosterone levels. Moreover, brain activity during the approach-avoidance task was significantly influenced by acute stress and social provocation, as reflected in reductions of early (P2) as well as of later (P3) ERP components in highly provoked cortisol responders. This may indicate a less accurate, rapid processing of socially relevant stimuli due to an acute increase in cortisol and subsequent social provocation. In conclusion, the two studies presented in this thesis provide evidence for significant changes in information processing due to acute stress, basal cortisol levels and social provocation, suggesting an enhanced preparation for a rapid behavioral response in the sense of a fight-or-flight reaction. These results confirm the model of Kruk et al. (2004) proposing a mediating role of changed information processes in the stress-aggression-link.
Aggression is one of the most researched topics in psychology. This is understandable, since aggression behavior does a lot of harm to individuals and groups. A lot is known already about the biology of aggression, but one system that seems to be of vital importance in animals has largely been overlooked: the hypothalamic-pituitary-adrenal (HPA) axis. Menno Kruk and Jószef Haller and their research teams developed rodent models of adaptive, normal, and abnormal aggressive behavior. They found the acute HPA axis (re)activity, but also chronic basal levels to be causally relevant in the elicitation and escalation of aggressive behavior. As a mediating variable, changes in the processing of relevant social information is proposed, although this could not be tested in animals. In humans, not a lot of research has been done, but there is evidence for both the association between acute and basal cortisol levels in (abnormal) aggression. However, not many of these studies have been experimental of nature. rnrnOur aim was to add to the understanding of both basal chronic levels of HPA axis activity, as well as acute levels in the formation of aggressive behavior. Therefore, we did two experiments, both with healthy student samples. In both studies we induced aggression with a well validated paradigm from social psychology: the Taylor Aggression Paradigm. Half of the subjects, however, only went through a non-provoking control condition. We measured trait basal levels of HPA axis activity on three days prior. We took several cortisol samples before, during, and after the task. After the induction of aggression, we measured the behavioral and electrophysiological brain response to relevant social stimuli, i.e., emotional facial expressions embedded in an emotional Stroop task. In the second study, we pharmacologically manipulated cortisol levels 60min before the beginning of the experiment. To do that, half of the subjects were administered 20mg of hydrocortisone, which elevates circulating cortisol levels (cortisol group), the other half was administered a placebo (placebo group). Results showed that acute HPA axis activity is indeed relevant for aggressive behavior. We found in Study 1 a difference in cortisol levels after the aggression induction in the provoked group compared to the non-provoked group (i.e., a heightened reactivity of the HPA axis). However, this could not be replicated in Study 2. Furthermore, the pharmacological elevation of cortisol levels led to an increase in aggressive behavior in women compared to the placebo group. There were no effects in men, so that while men were significantly more aggressive than women in the placebo group, they were equally aggressive in the cortisol group. Furthermore, there was an interaction of cortisol treatment with block of the Taylor Aggression Paradigm, in that the cortisol group was significantly more aggressive in the third block of the task. Concerning basal HPA axis activity, we found an effect on aggressive behavior in both studies, albeit more consistently in women and in the provoked and non-provoked groups. However, the effect was not apparent in the cortisol group. After the aggressive encounter, information processing patterns were changed in the provoked compared to the non-provoked group for all facial expressions, especially anger. These results indicate that the HPA axis plays an important role in the formation of aggressive behavior in humans, as well. Importantly, different changes within the system, be it basal or acute, are associated with the same outcome in this task. More studies are needed, however, to better understand the role that each plays in different kinds of aggressive behavior, and the role information processing plays as a possible mediating variable. This extensive knowledge is necessary for better behavioral interventions.
Objective: Only 20-25% of the variance for the two to four-fold increased risk of developing breast cancer among women with family histories of the disease can be explained by known gene mutations. Other factors must exist. Here, a familial breast cancer model is proposed in which overestimation of risk, general distress, and cancer-specific distress constitute the type of background stress sufficient to increase unrelated acute stress reactivity in women at familial risk for breast cancer. Furthermore, these stress reactions are thought to be associated with central adiposity, an independent well-established risk factor for breast cancer. Hence, stress through its hormonal correlates and possible associations with central adiposity may play a crucial role in the etiology of breast cancer in women at familial risk for the disease. Methods: Participants were 215 healthy working women with first-degree relatives diagnosed before (high familial risk) or after age 50 (low familial risk), or without breast cancer in first-degree relatives (no familial risk). Participants completed self-report measures of perceived lifetime breast cancer risk, intrusive thoughts and avoidance about breast cancer (Impact of Event Scale), negative affect (Profile of Mood States), and general distress (Brief Symptom Inventory). Anthropometric measurements were taken. Urine samples during work, home, and sleep were collected for assessment of cortisol responses in the naturalistic setting where work was conceptualized as the stressful time of the day. Results: A series of analyses indicated a gradient increase of cortisol levels in response to the work environment from no, low, to high familial risk of breast cancer. When adding breast cancer intrusions to the model with familial risk status predicting work cortisol levels, significant intrusion effects emerged rendering the familial risk group non-significant. However, due to a lack of association between intrusions and cortisol in the low and high familial risk group separately, as well as a significant difference between low and high familial risk on intrusions, but not on work cortisol levels, full mediation of familial risk group effects on work cortisol by intrusions could not be established. A separate analysis indicated increased levels of central but not general adiposity in women at high familial risk of breast cancer compared to the low and no risk groups. There were no significant associations between central adiposity and cortisol excretion. Conclusion: A hyperactive hypothalamus-pituitary-adrenal axis with a more pronounced excretion of its end product cortisol, as well as elevated levels of central but not overall adiposity in women at high familial risk for breast cancer may indicate an increased health risk which expands beyond that of increased breast cancer risk for these women.