150 Psychologie
Refine
Year of publication
- 2023 (6) (remove)
Document Type
- Article (4)
- Doctoral Thesis (2)
Keywords
- Affektive Bindung (1)
- Ambivalence (1)
- Dissonance (1)
- Handlungstheorie (1)
- Klient (1)
- Kognition (1)
- Kognitive Verhaltenstherapie (1)
- Maschinelles Lernen (1)
- Meat Consumption (1)
- Meat Paradox (1)
Institute
- Fachbereich 1 (3)
- Psychologie (3)
There is no longer any doubt about the general effectiveness of psychotherapy. However, up to 40% of patients do not respond to treatment. Despite efforts to develop new treatments, overall effectiveness has not improved. Consequently, practice-oriented research has emerged to make research results more relevant to practitioners. Within this context, patient-focused research (PFR) focuses on the question of whether a particular treatment works for a specific patient. Finally, PFR gave rise to the precision mental health research movement that is trying to tailor treatments to individual patients by making data-driven and algorithm-based predictions. These predictions are intended to support therapists in their clinical decisions, such as the selection of treatment strategies and adaptation of treatment. The present work summarizes three studies that aim to generate different prediction models for treatment personalization that can be applied to practice. The goal of Study I was to develop a model for dropout prediction using data assessed prior to the first session (N = 2543). The usefulness of various machine learning (ML) algorithms and ensembles was assessed. The best model was an ensemble utilizing random forest and nearest neighbor modeling. It significantly outperformed generalized linear modeling, correctly identifying 63.4% of all cases and uncovering seven key predictors. The findings illustrated the potential of ML to enhance dropout predictions, but also highlighted that not all ML algorithms are equally suitable for this purpose. Study II utilized Study I’s findings to enhance the prediction of dropout rates. Data from the initial two sessions and observer ratings of therapist interventions and skills were employed to develop a model using an elastic net (EN) algorithm. The findings demonstrated that the model was significantly more effective at predicting dropout when using observer ratings with a Cohen’s d of up to .65 and more effective than the model in Study I, despite the smaller sample (N = 259). These results indicated that generating models could be improved by employing various data sources, which provide better foundations for model development. Finally, Study III generated a model to predict therapy outcome after a sudden gain (SG) in order to identify crucial predictors of the upward spiral. EN was used to generate the model using data from 794 cases that experienced a SG. A control group of the same size was also used to quantify and relativize the identified predictors by their general influence on therapy outcomes. The results indicated that there are seven key predictors that have varying effect sizes on therapy outcome, with Cohen's d ranging from 1.08 to 12.48. The findings suggested that a directive approach is more likely to lead to better outcomes after an SG, and that alliance ruptures can be effectively compensated for. However, these effects
were reversed in the control group. The results of the three studies are discussed regarding their usefulness to support clinical decision-making and their implications for the implementation of precision mental health.
The benefits of prosocial power motivation in leadership: Action orientation fosters a win-win
(2023)
Power motivation is considered a key component of successful leadership. Based on its dualistic nature, the need for power (nPower) can be expressed in a dominant or a prosocial manner. Whereas dominant motivation is associated with antisocial behaviors, prosocial motivation is characterized by more benevolent actions (e.g., helping, guiding). Prosocial enactment of the power motive has been linked to a wide range of beneficial outcomes, yet less has been investigated what determines a prosocial enactment of the power motive. According to Personality Systems Interactions (PSI) theory, action orientation (i.e., the ability to self-regulate affect) promotes prosocial enactment of the implicit power motive and initial findings within student samples verify this assumption. In the present study, we verified the role of action orientation as an antecedent for prosocial power enactment in a leadership sample (N = 383). Additionally, we found that leaders personally benefited from a prosocial enactment strategy. Results show that action orientation through prosocial power motivation leads to reduced power-related anxiety and, in turn, to greater leader well-being. The integration of motivation and self-regulation research reveals why leaders enact their power motive in a certain way and helps to understand how to establish a win-win situation for both followers and leaders.
COVID-19 was a harsh reminder that diseases are an aspect of human existence and mortality. It was also a live experiment in the formation and alteration of disease-related attitudes. Not only are these attitudes relevant to an individual’s self-protective behavior, but they also seem to be associated with social and political attitudes more broadly. One of these attitudes is Social Darwinism, which holds that a pandemic benefits society by enabling nature “to weed out the weak”. In two countries (N = 300, N = 533), we introduce and provide evidence for the reliability, validity, and usefulness of the Disease-Related Social Darwinism (DRSD) Short Scale measuring this concept. Results indicate that DRSD is meaningful related to other central political attitudes like Social Dominance Orientation, Authoritarianism and neoliberalism. Importantly, the scale significantly predicted people’s protective behavior during the Pandemic over and above general social Darwinism. Moreover, it significantly predicted conservative attitudes, even after controlling for Social Dominance Orientation.
People are increasingly concerned about how meat affects the environment, human health, and animal welfare, yet eating and enjoying meat remains a norm. Unsurprisingly, many people are ambivalent about meat—evaluating it as both positive and negative. Here, we propose that meat-related conflict is multidimensional and depends on people’s dietary group: Omnivores’ felt ambivalence relates to multiple negative associations that oppose a predominantly positive attitude towards meat, and veg*ans’ ambivalence relates to various positive associations that oppose a predominantly negative attitude. A qualitative study (N = 235; German) revealed that omnivores and veg*ans experience meat-related ambivalence due to associations with animals, sociability, sustainability, health, and sensory experiences. To quantify felt ambivalence in these domains, we developed the Meat Ambivalence Questionnaire (MAQ). We validated the MAQ in four pre-registered studies using self-report and behavioral data (N = 3,485; German, UK, representative US). Both omnivores and veg*ans reported meat-related ambivalence, but with differences across domains and their consequences for meat consumption. Specifically, ambivalence was associated with less meat consumption in omnivores (especially sensory-/animal-based ambivalence) and more meat consumption in veg*ans (especially sensory-/socially-based ambivalence). Network analyses shed further light on the nomological net of the MAQ while controlling for a comprehensive set of determinants of meat consumption. By introducing the MAQ, we hope to provide researchers with a tool to better understand how ambivalence accompanies behavior change and maintenance.
The COVID-19 pandemic has affected schooling worldwide. In many places, schools closed for weeks or months, only part of the student body could be educated at any one time, or students were taught online. Previous research discloses the relevance of schooling for the development of cognitive abilities. We therefore compared the intelligence test performance of 424 German secondary school students in Grades 7 to 9 (42% female) tested after the first six months of the COVID-19 pandemic (i.e., 2020 sample) to the results of two highly comparable student samples tested in 2002 (n = 1506) and 2012 (n = 197). The results revealed substantially and significantly lower intelligence test scores in the 2020 sample than in both the 2002 and 2012 samples. We retested the 2020 sample after another full school year of COVID-19-affected schooling in 2021. We found mean-level changes of typical magnitude, with no signs of catching up to previous cohorts or further declines in cognitive performance. Perceived stress during the pandemic did not affect changes in intelligence test results between the two measurements.
Every action we perform, no matter how simple or complex, has a cognitive representation. It is commonly assumed that these are organized hierarchically. Thus, the representation of a complex action consists of multiple simpler actions. The representation of a simple action, in turn, consists of stimulus, response, and effect features. These are integrated into one representation upon the execution of an action and can be retrieved if a feature is repeated. Depending on whether retrieved features match or only partially match the current action episode, this might benefit or impair the execution of a subsequent action. This pattern of costs and benefits results in binding effects that indicate the strength of common representation between features. Binding effects occur also in more complex actions: Multiple simple actions seem to form representations on a higher level through the integration and retrieval of sequentially given responses, resulting in so-called response-response binding effects. This dissertation aimed to investigate what factors determine whether simple actions form more complex representations. The first line of research (Articles 1-3) focused on dissecting the internal structure of simple actions. Specifically, I investigated whether the spatial relation of stimuli, responses, or effects, that are part of two different simple actions, influenced whether these simple actions are represented as one more complex action. The second line of research (Articles 2, 4, and 5) investigated the role of context on the formation and strength of more complex action representations. Results suggest that spatial separation of responses as well as context might affect the strength of more complex action representations. In sum, findings help to specify assumptions on the structure of complex action representations. However, it may be important to distinguish factors that influence the strength and structure of action representations from factors that terminate action representations.