Refine
Year of publication
Document Type
- Doctoral Thesis (17)
- Article (7)
- Conference Proceedings (1)
Keywords
- Fernerkundung (25) (remove)
With the ongoing trend towards deep learning in the remote sensing community, classical pixel based algorithms are often outperformed by convolution based image segmentation algorithms. This performance was mostly validated spatially, by splitting training and validation pixels for a given year. Though generalizing models temporally is potentially more difficult, it has been a recent trend to transfer models from one year to another, and therefore to validate temporally. The study argues that it is always important to check both, in order to generate models that are useful beyond the scope of the training data. It shows that convolutional neural networks have potential to generalize better than pixel based models, since they do not rely on phenological development alone, but can also consider object geometry and texture. The UNET classifier was able to achieve the highest F1 scores, averaging 0.61 in temporal validation samples, and 0.77 in spatial validation samples. The theoretical potential for overfitting geometry and just memorizing the shape of fields that are maize has been shown to be insignificant in practical applications. In conclusion, kernel based convolutions can offer a large contribution in making agricultural classification models more transferable, both to other regions and to other years.
Energy transition strategies in Germany have led to an expansion of energy crop cultivation in landscape, with silage maize as most valuable feedstock. The changes in the traditional cropping systems, with increasing shares of maize, raised concerns about the sustainability of agricultural feedstock production regarding threats to soil health. However, spatially explicit data about silage maize cultivation are missing; thus, implications for soil cannot be estimated in a precise way. With this study, we firstly aimed to track the fields cultivated with maize based on remote sensing data. Secondly, available soil data were target-specifically processed to determine the site-specific vulnerability of the soils for erosion and compaction. The generated, spatially-explicit data served as basis for a differentiated analysis of the development of the agricultural biogas sector, associated maize cultivation and its implications for soil health. In the study area, located in a low mountain range region in Western Germany, the number and capacity of biogas producing units increased by 25 installations and 10,163 kW from 2009 to 2016. The remote sensing-based classification approach showed that the maize cultivation area was expanded by 16% from 7305 to 8447 hectares. Thus, maize cultivation accounted for about 20% of the arable land use; however, with distinct local differences. Significant shares of about 30% of the maize cultivation was done on fields that show at least high potentials for soil erosion exceeding 25 t soil ha−1 a−1. Furthermore, about 10% of the maize cultivation was done on fields that pedogenetically show an elevated risk for soil compaction. In order to reach more sustainable cultivation systems of feedstock for anaerobic digestion, changes in cultivated crops and management strategies are urgently required, particularly against first signs of climate change. The presented approach can regionally be modified in order to develop site-adapted, sustainable bioenergy cropping systems.
Although gravitropism forces trees to grow vertically, stems have shown to prefer specific orientations. Apart from wind deforming the tree shape, lateral light can result in prevailing inclination directions. In recent years a species dependent interaction between gravitropism and phototropism, resulting in trunks leaning down-slope, has been confirmed, but a terrestrial investigation of such factors is limited to small scale surveys. ALS offers the opportunity to investigate trees remotely. This study shall clarify whether ALS detected tree trunks can be used to identify prevailing trunk inclinations. In particular, the effect of topography, wind, soil properties and scan direction are investigated empirically using linear regression models. 299.000 significantly inclined stems were investigated. Species-specific prevailing trunk orientations could be observed. About 58% of the inclination and 19% of the orientation could be explained by the linear models, while the tree species, tree height, aspect and slope could be identified as significant factors. The models indicate that deciduous trees tend to lean down-slope, while conifers tend to lean leeward. This study has shown that ALS is suitable to investigate the trunk orientation on larger scales. It provides empirical evidence for the effect of phototropism and wind on the trunk orientation.
For grape canopy pixels captured by an unmanned aerial vehicle (UAV) tilt-mounted RedEdge-M multispectral sensor in a sloped vineyard, an in situ Walthall model can be established with purely image-based methods. This was derived from RedEdge-M directional reflectance and a vineyard 3D surface model generated from the same imagery. The model was used to correct the angular effects in the reflectance images to form normalized difference vegetation index (NDVI)orthomosaics of different view angles. The results showed that the effect could be corrected to a certain scope, but not completely. There are three drawbacks that might restrict a successful angular model construction and correction: (1) the observable micro shadow variation on the canopy enabled by the high resolution; (2) the complexity of vine canopies that causes an inconsistency between reflectance and canopy geometry, including effects such as micro shadows and near-infrared (NIR) additive effects; and (3) the resolution limit of a 3D model to represent the accurate real-world optical geometry. The conclusion is that grape canopies might be too inhomogeneous for the tested method to perform the angular correction in high quality.
In order to discuss potential sustainability issues of expanding silage maize cultivation in Rhineland-Palatinate, spatially explicit monitoring is necessary. Publicly available statistical records are often not a sufficient basis for extensive research, especially on soil health, where risk factors like erosion and compaction depend on variables that are specific to every site, and hard to generalize for larger administrative aggregates. The focus of this study is to apply established classification algorithms to estimate maize abundance for each independent pixel, while at the same time accounting for their spatial relationship. Therefore, two ways to incorporate spatial autocorrelation of neighboring pixels are combined with three different classification models. The performance of each of these modeling approaches is analyzed and discussed. Finally, one prediction approach is applied to the imagery, and the overall predicted acreage is compared to publicly available data. We were able to show that Support Vector Machine (SVM) classification and Random Forests (RF) were able to distinguish maize pixels reliably, with kappa values well above 0.9 in most cases. The Generalized Linear Model (GLM) performed substantially worse. Furthermore, Regression Kriging (RK) as an approach to integrate spatial autocorrelation into the prediction model is not suitable in use cases with millions of sparsely clustered training pixels. Gaussian Blur is able to improve predictions slightly in these cases, but it is possible that this is only because it smoothes out impurities of the reference data. The overall prediction with RF classification combined with Gaussian Blur performed well, with out of bag error rates of 0.5% in 2009 and 1.3% in 2016. Despite the low error rates, there is a discrepancy between the predicted acreage and the official records, which is 20% in 2009 and 27% in 2016.
Abstract: Thermal infrared (TIR) multi-/hyperspectral and sun-induced fluorescence (SIF) approaches together with classic solar-reflective (visible, near-, and shortwave infrared reflectance (VNIR)/SWIR) hyperspectral remote sensing form the latest state-of-the-art techniques for the detection of crop water stress. Each of these three domains requires dedicated sensor technology currently in place for ground and airborne applications and either have satellite concepts under development (e.g., HySPIRI/SBG (Surface Biology and Geology), Sentinel-8, HiTeSEM in the TIR) or are subject to satellite missions recently launched or scheduled within the next years (i.e., EnMAP and PRISMA (PRecursore IperSpettrale della Missione Applicativa, launched on March 2019) in the VNIR/SWIR, Fluorescence Explorer (FLEX) in the SIF). Identification of plant water stress or drought is of utmost importance to guarantee global water and food supply. Therefore, knowledge of crop water status over large farmland areas bears large potential for optimizing agricultural water use. As plant responses to water stress are numerous and complex, their physiological consequences affect the electromagnetic signal in different spectral domains. This review paper summarizes the importance of water stress-related applications and the plant responses to water stress, followed by a concise review of water-stress detection through remote sensing, focusing on TIR without neglecting the comparison to other spectral domains (i.e., VNIR/SWIR and SIF) and multi-sensor approaches. Current and planned sensors at ground, airborne, and satellite level for the TIR as well as a selection of commonly used indices and approaches for water-stress detection using the main multi-/hyperspectral remote sensing imaging techniques are reviewed. Several important challenges are discussed that occur when using spectral emissivity, temperature-based indices, and physically-based approaches for water-stress detection in the TIR spectral domain. Furthermore, challenges with data processing and the perspectives for future satellite missions in the TIR are critically examined. In conclusion, information from multi-/hyperspectral TIR together with those from VNIR/SWIR and SIF sensors within a multi-sensor approach can provide profound insights to actual plant (water) status and the rationale of physiological and biochemical changes. Synergistic sensor use will open new avenues for scientists to study plant functioning and the response to environmental stress in a wide range of ecosystems.
Dry tropical forests are facing massive conversion and degradation processes and they are the most endangered forest type worldwide. One of the largest dry forest types are Miombo forests that stretch across the Southern African subcontinent and the proportionally largest part of this type can be found in Angola. The study site of this thesis is located in south-central Angola. The country still suffers from the consequences of the 27 years of civil war (1975-2002) that provides a unique socio-economic setting. The natural characteristics are a representative cross section which proved ideal to study underlying drivers as well as current and retrospective land use change dynamics. The major land change dynamic of the study area is the conversion of Miombo forests to cultivation areas as well as modification of forest areas, i.e. degradation, due to the extraction of natural resources. With future predictions of population growth, climate change and large scale investments, land pressure is expected to further increase. To fully understand the impacts of these dynamics, both, conversion and modification of forest areas were assessed. By using the conceptual framework of ecosystem services, the predominant trade-off between food and timber in the study area was analyzed, including retrospective dynamics and impacts. This approach accounts for products that contribute directly or indirectly to human well-being. For this purpose, data from the Landsat archive since 1989 until 2013 was applied in different study area adapted approaches. The objectives of these approaches were (I) to detect underlying drivers and their temporal and spatial extent of impact, (II) to describe modification and conversion processes that reach from times of armed conflicts over the ceasefire and the post-war period and (III) to provide an assessment of drivers and impacts in a comparative setting. It could be shown that major underlying drivers for the conversion processes are resettlement dynamics as well as the location and quality of streets and settlements. Furthermore, forests that are selectively used for resource extraction have a higher chance of being converted to a field. Drivers of forest degradation are on one hand also strongly connected to settlement and infrastructural structures. But also to a large extent to fire dynamics that occur mostly in more remote and presumably undisturbed forest areas. The loss of woody biomass as well as its slow recovery after the abandonment of fields could be quantified and stands in large contrast to the amount of potentially cultivated food that is necessarily needed. The results of the thesis support the fundamental understanding of drivers and impacts in the study area and can thus contribute to a sustainable resource management.
Water-deficit stress, usually shortened to water- or drought stress, is one of the most critical abiotic stressors limiting plant growth, crop yield and quality concerning food production. Today, agriculture consumes about 80-90% of the global freshwater used by humans and about two thirds are used for crop irrigation. An increasing world population and a predicted rise of 1.0-2.5-°C in the annual mean global temperature as a result of climate change will further increase the demand of water in agriculture. Therefore, one of the most challenging tasks of our generation is to reduce the amount water used per unit yield to satisfy the second UN Sustainable Development Goal and to ensure global food security. Precision agriculture offers new farming methods with the goal to improve the efficiency of crop production by a sustainable use of resources. Plant responses to water stress are complex and co-occur with other environmental stresses under natural conditions. In general, water stress causes plant physiological and biochemical changes that depend on the severity and the duration of the actual plant water deficit. Stomatal closure is one of the first responses to plant water stress causing a decrease in plant transpiration and thus an increase in plant temperature. Prolonged or severe water stress leads to irreversible damage to the photosynthetic machinery and is associated with decreasing chlorophyll content and leaf structural changes (e.g., leaf rolling). Since a crop can already be irreversibly damaged by only mild water deficit, a pre-visual detection of water stress symptoms is essential to avoid yield loss. Remote sensing offers a non-destructive and spatio-temporal method for measuring numerous physiological, biochemical and structural crop characteristics at different scales and thus is one of the key technologies used in precision agriculture. With respect to the detection of plant responses to water stress, the current state-of-the-art hyperspectral remote sensing imaging techniques are based on measurements of thermal infrared emission (TIR; 8-14 -µm), visible, near- and shortwave infrared reflectance (VNIR/SWIR; 0.4-2.5 -µm), and sun-induced fluorescence (SIF; 0.69 and 0.76 -µm). It is, however, still unclear how sensitive these techniques are with respect to water stress detection. Therefore, the overall aim of this dissertation was to provide a comparative assessment of remotely sensed measures from the TIR, SIF, and VNIR/SWIR domains for their ability to detect plant responses to water stress at ground- and airborne level. The main findings of this thesis are: (i) temperature-based indices (e.g., CWSI) were most sensitive for the detection of plant water stress in comparison to reflectance-based VNIR/SWIR indices (e.g., PRI) and SIF at both, ground- and airborne level, (ii) for the first time, spectral emissivity as measured by the new hyperspectral TIR instrument could be used to detect plant water stress at ground level. Based on these findings it can be stated that hyperspectral TIR remote sensing offers great potential for the detection of plant responses to water stress at ground- and airborne level based on both TIR key variables, surface temperature and spectral emissivity. However, the large-scale application of water stress detection based on hyperspectral TIR measures in precision agriculture will be challenged by several problems: (i) missing thresholds of temperature-based indices (e.g., CWSI) for the application in irrigation scheduling, (ii) lack of current TIR satellite missions with suitable spectral and spatial resolution, (iii) lack of appropriate data processing schemes (including atmosphere correction and temperature emissivity separation) for hyperspectral TIR remote sensing at airborne- and satellite level.
Die organische Bodensubstanz (OBS) ist eine fundamentale Steuergröße aller biogeochemischen Prozesse und steht in engem Zusammenhang zu Kohlenstoffkreisläufen und globalem Klima. Die derzeitige Herausforderung der Ökosystemforschung ist die Identifizierung der für die Bodenqualität relevanten Bioindikatoren und deren Erfassung mit Methoden, die eine nachhaltige Nutzung der OBS in großem Maßstab überwachen und damit zu globalen Erderkundungsprogrammen beitragen können. Die fernerkundliche Technik der Vis-NIR Spektroskopie ist eine bewährte Methode für die Beurteilung und das Monitoring von Böden, wobei ihr Potential bezüglich der Erfassung biologischer und mikrobieller Bodenparameter bisher umstritten ist. Das Ziel der vorgestellten Arbeit war die quantitative und qualitative Untersuchung der OBS von Ackeroberböden mit unterschiedlichen Methoden und variierender raumzeitlicher Auflösung sowie die anschließende Bewertung des Potentials non-invasiver, spektroskopischer Methoden zur Erfassung ausgewählter Parameter dieser OBS. Dafür wurde zunächst eine umfassende lokale Datenbank aus chemischen, physikalischen und biologischen Bodenparametern und dazugehörigen Bodenspektren einer sehr heterogenen geologischen Region mit gemäßigten Klima im Südwesten Deutschlands erstellt. Auf dieser Grundlage wurde dann das Potential der Bodenspektroskopie zur Erfassung und Schätzung von Feld- und Geländedaten ausgewählter OBS Parameter untersucht. Zusätzlich wurde das Optimierungspotential der Vorhersagemodelle durch statistische Vorverarbeitung der spektralen Daten getestet. Die Güte der Vorhersagewahrscheinlichkeit gebräuchlicher fernerkundlicher Bodenparameter (OC, N) konnte für im Labor erhobene Hyperspektralmessungen durch statistische Optimierungstechniken wie Variablenselektion und Wavelet-Transformation verbessert werden. Ein zusätzliches Datenset mit mikrobiellen/labilen OBS Parametern und Felddaten wurde untersucht um zu beurteilen, ob Bodenspektren zur Vorhersage genutzt werden können. Hierzu wurden mikrobieller Kohlenstoff (MBC), gelöster organischer Kohlenstoff (DOC), heißwasserlöslicher Kohlenstoff (HWEC), Chlorophyll α (Chl α) und Phospholipid-Fettsäuren (PLFAs) herangezogen. Für MBC und DOC konnte abhängig von Tiefe und Jahreszeit eine mittlere Güte der Vorhersagewahrscheinlichkeit erreicht werden, wobei zwischen hohen und niedrigen Konzentration unterschieden werden konnte. Vorhersagen für OC und PLFAs (Gesamt-PLFA-Gehalt sowie die mikrobiellen Gruppen der Bakterien, Pilze und Algen) waren nicht möglich. Die beste Prognosewahrscheinlichkeit konnte für das Chlorophyll der Grünalgen an der Bodenoberfläche (0-1cm Bodentiefe) erzielt werden, welches durch Korrelation mit MBC vermutlich auch für dessen gute Vorhersagewahrscheinlichkeit verantwortlich war. Schätzungen des Gesamtgehaltes der OBS, abgeleitet durch OC, waren hingegen nicht möglich, was der hohen Dynamik der mikrobiellen OBS Parameter an der Bodenoberfläche zuzuschreiben ist. Das schränkt die Repräsentativität der spektralen Messung der Bodenoberfläche zeitlich ein. Die statistische Optimierungstechnik der Variablenselektion konnte für die Felddaten nur zu einer geringen Verbesserung der Vorhersagemodelle führen. Die Untersuchung zur Herkunft der organischen Bestandteile und ihrer Auswirkungen auf die Quantität und Qualität der OBS konnte die mikrobielle Nekromasse und die Gruppe der Bodenalgen als zwei mögliche weitere signifikante Quellen für die Entstehung und Beständigkeit der OBS identifizieren. Insgesamt wird der mikrobielle Beitrag zur OBS höher als gemeinhin angenommen eingestuft. Der Einfluss mikrobieller Bestandteile konnte für die OBS Menge, speziell in der mineralassoziierten Fraktion der OBS in Ackeroberböden, sowie für die OBS Qualität hinsichtlich der Korrelation von mikrobiellen Kohlenhydraten und OBS Stabilität gezeigt werden. Die genaue Quantifizierung dieser OBS Parameter und ihre Bedeutung für die OBS Dynamik sowie ihre Prognostizierbarkeit mittels spektroskopischer Methoden ist noch nicht vollständig geklärt. Für eine abschließende Beurteilung sind deshalb weitere Studien notwendig.
Determining the exact position of a forest inventory plot—and hence the position of the sampled trees—is often hampered by a poor Global Navigation Satellite System (GNSS) signal quality beneath the forest canopy. Inaccurate geo-references hamper the performance of models that aim to retrieve useful information from spatially high remote sensing data (e.g., species classification or timber volume estimation). This restriction is even more severe on the level of individual trees. The objective of this study was to develop a post-processing strategy to improve the positional accuracy of GNSS-measured sample-plot centers and to develop a method to automatically match trees within a terrestrial sample plot to aerial detected trees. We propose a new method which uses a random forest classifier to estimate the matching probability of each terrestrial-reference and aerial detected tree pair, which gives the opportunity to assess the reliability of the results. We investigated 133 sample plots of the Third German National Forest Inventory (BWI, 2011"2012) within the German federal state of Rhineland-Palatinate. For training and objective validation, synthetic forest stands have been modeled using the Waldplaner 2.0 software. Our method has achieved an overall accuracy of 82.7% for co-registration and 89.1% for tree matching. With our method, 60% of the investigated plots could be successfully relocated. The probabilities provided by the algorithm are an objective indicator of the reliability of a specific result which could be incorporated into quantitative models to increase the performance of forest attribute estimations.
Earth observation (EO) is a prerequisite for sustainable land use management, and the open-data Landsat mission is at the forefront of this development. However, increasing data volumes have led to a "digital-divide", and consequently, it is key to develop methods that account for the most data-intensive processing steps, then used for the generation and provision of analysis-ready, standardized, higher-level (Level 2 and Level 3) baseline products for enhanced uptake in environmental monitoring systems. Accordingly, the overarching research task of this dissertation was to develop such a framework with a special emphasis on the yet under-researched drylands of Southern Africa. A fully automatic and memory-resident radiometric preprocessing streamline (Level 2) was implemented. The method was applied to the complete Angolan, Zambian, Zimbabwean, Botswanan, and Namibian Landsat record, amounting 58,731 images with a total data volume of nearly 15 TB. Cloud/shadow detection capabilities were improved for drylands. An integrated correction of atmospheric, topographic and bidirectional effects was implemented, based on radiative theory with corrections for multiple scatterings, and adjacency effects, as well as including a multilayered toolset for estimating aerosol optical depth over persistent dark targets or by falling back on a spatio-temporal climatology. Topographic and bidirectional effects were reduced with a semi-empirical C-correction and a global set of correction parameters, respectively. Gridding and reprojection were already included to facilitate easy and efficient further processing. The selection of phenologically similar observations is a key monitoring requirement for multi-temporal analyses, and hence, the generation of Level 3 products that realize phenological normalization on the pixel-level was pursued. As a prerequisite, coarse resolution Land Surface Phenology (LSP) was derived in a first step, then spatially refined by fusing it with a small number of Level 2 images. For this purpose, a novel data fusion technique was developed, wherein a focal filter based approach employs multi-scale and source prediction proxies. Phenologically normalized composites (Level 3) were generated by coupling the target day (i.e. the main compositing criterion) to the input LSP. The approach was demonstrated by generating peak, end and minimum of season composites, and by comparing these with static composites (fixed target day). It was shown that the phenological normalization accounts for terrain- and land cover class-induced LSP differences, and the use of Level 2 inputs enables a wide range of monitoring options, among them the detection of within state processes like forest degradation. In summary, the developed preprocessing framework is capable of generating several analysis-ready baseline EO satellite products. These datasets can be used for regional case studies, but may also be directly integrated into more operational monitoring systems " e.g. in support of the Reducing Emissions from Deforestation and Forest Degradation (REDD) incentive. In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Trier University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.
Die Arbeit untersucht das Potential kleiner unbemannter Luftfahrtsysteme (UAS) in Landwirtschaft und Archäologie. Der Begriff UAS beinhaltet dabei: Fluggerät, Antriebsmechanismus, Sensorik, Bodenstation, Kommunikationsmittel zwischen Bodenstation und Fluggerät und weiteres Equipment. Aufgrund ihrer Flexibilität, fanden UAS seit der Jahrtausendwende eine blühende Entwicklung. Um die wachsende Weltbevölkerung zu ernähren, muss die landwirtschaftliche Produktion sensibel und nachhaltig intensiviert werden, um Nahrungssicherheit für alle zu gewährleisten und weitere Boden- und Landdegradation zu vermeiden. Präzisionslandwirtschaft umfasst technologische Verbesserungen hin zur effizienteren und weniger schädlichen landwirtschaftlichen Praxis. Hierbei ist die Verfügung über zeitnahe, leicht zugängliche hoch aufgelöste räumliche Daten eine Voraussetzung für die Nahrungsmittelproduktion. UAS schließen hier die Lücke zwischen Bodendaten und teuren bemannten Luftfahrtsysteme und selteneren Satellitenbildern. Die Vorteile der UAS-Daten liegen in der ad-hoc Akquisition großmaßstäbiger Fernerkundungsdaten, den geringeren Kosten gegenüber der bemannten Systeme und einer relativen Wetterunabhängigkeit, da auch unter Wolken geflogen werden kann. Den größten Anteil innerhalb der UAS stellen die Mini-UAS (Abfluggewicht von 5kg) und dabei vertikale Start- und Landesysteme. Diese können über Untersuchungsgebieten schweben, sind dadurch jedoch langsamer und eher geeignet für kleinere Flächen. Flugregularien und die Integration in den bemannten Luftraum werden derzeit europaweit harmonisiert und in den Mitgliedstaaten umgesetzt. Die Hauptziele dieser Arbeit lagen in der Evaluierung wie Schlüsselparametern landwirtschaftlicher Nutzpflanzen (Chlorophyll-, Stickstoffgehalt, Erntemenge, sonnendinduzierter Chlorophyll-Fluoreszenz) mittels UAS abgeleitet und wie UAS-Daten für archäologische Aufklärung genutzt werden können. Dazu wurde ein Quadrokopter (md4-1000, microdrones GmbH) mit einer digitalen Spiegelreflexkamera, einem Multispektralsensor (MiniMCA-6, Tetracam Inc.) und einer Thermalkamera (UCM, Zeiss) ausgestattet. Eine Sensitivitätsanalyse führte zur Ableitung geeigneter Wellenlängenbereiche und untersuchte bidirektionale und Flughöheneffekte auf das Multispektralsignal. Die Studie beschreibt außerdem die Vorgehensweise bei Bildaufnahme und Vorprozessierung mit besonderem Schwerpunkt auf die Multispektralkamera (530-900 nm). Die Vorprozessierung beinhaltet die Korrektur von Sensorfehlern (Linsenverzeichnung, Vignettierung, Kanalkalibrierung), die radiometrische Kalibrierung über eine empirische Korrektur mit Hilfe von Referenzspektren, Atmosphärenkorrektur und schließlich die geometrische Verarbeitung unter Verwendung von Structure from Motion Programme zur Generierung von Punktwolkenmodellen bis hin zum digitalen Orthophotomosaik und Höhenmodell in Zentimeterauflösung. In einer Weinbergsstudie (2011, 2012) wurden geeignete Beobachtungswinkel für die Untersuchung des Einflusses von Bodenbearbeitungsstrategien auf das Multispektralsignal evaluiert. Schrägichtaufnahmen von 45-° Beobachtungswinkel gegenüber Nadir waren am besten geeignet zur Ableitung pflanzenphysiolgischer Parameter und multispektraler Unterscheidung von Bodenbearbeitungstypen. So konnten Chlorophyll-Gehalte über Regressionsanalysen über mehrere saisonale Aufnahmen mit einem kreuzvalidierten R-² von 0.65, Stickstoffgehaltsindex von 0.76 (2012) und Ernte mit 0.84 (2011) und für verschiedene Zeitpunkte nach der Blüte (0.87) und während der Reifephase (0.73) ermittelt werden. Desweiteren wurde die (Fs) in einem Stickstoff-Düngung-Experiment bei Zuckerrüben von Multispektral-, Indizes und Thermaldaten untersucht (HyFlex-Kampagne 2012). Zuckerrübenvarietäten konnten spektral und thermal unterschieden werden, die Fluoreszenzindizes waren wetterbedingt, weniger erfolgreich. Außerdem konnte der Tagesgang der Fs trotz instabiler Einstrahlungsverhältnisse am Morgen abgeleitet werden. Die Werte waren jedoch gegenüber Bodenmessungen um ein Vielfaches erhöht. Archäologische Fernerkundung durch UAS wird bereits seit Jahren (z.B. mit Fesselballons) durchgeführt. Die Mustererkennung profitiert von der spektralen Ausdehnung vom menschlichen Auge hin zu multispektralen, neuerdings auch hyperspektralen Sensoren. Studien in Los Bañales, Spanien, zeigten die Möglichkeiten des Informationsgewinns durch Bildverarbeitung von UAS-Daten: vermutliche historische Siedlungsmuster konnten durch Landoberflächenklassifikation von Multispektraldaten mittels Support Vector Machines und Bestandsmusterdetektion beschrieben werden. Um qualitative hochwertige, hochaufgelöste UAS-Daten zu erhalten, sollten die Daten mit hoher Überlappung (80%) und auch Schrägsicht akquiriert und ggf. durch Referenzmessungen zur radiometrischen Kalibrierung und GPS-Messungen für geometrische Referenzierung ergänzt werden.
Evapotranspiration (ET) is one of the most important variables in hydrological studies. In the ET process, energy exchange and water transfer are involved. ET consists of transpiration and evaporation. The amount of plants transpiration dominates in ET. Especially in the forest regions, the ratio of transpiration to ET is in general 80-90 %. Meteorological variables, vegetation properties, precipitation and soil moisture are critical influence factors for ET generation. The study area is located in the forest area of Nahe catchment (Rhineland-Palatinate, Germany). The Nahe catchment is highly wooded. About 54.6 % of this area is covered by forest, with deciduous forest and coniferous forest are two primary types. A hydrological model, WaSiM-ETH, was employed for a long-term simulation from 1971-2003 in the Nahe catchment. In WaSiM-ETH, the potential evapotranspiration (ETP) was firstly calculated by the Penman-Monteith equation, and subsequently reduced according to the soil water content to obtain the actual evapotranspiration (ETA). The Penman-Monteith equation has been widely used and recommended for ETP estimation. The difficulties in applying this equation are the high demand of ground-measured meteorological data and the determination of surface resistance. A method combined remote sensing images with ground-measured meteorological data was also used to retrieve the ETA. This method is based on the surface properties such as surface albedo, fractional vegetation cover (FVC) and land surface temperature (LST) to obtain the latent heat flux (LE, corresponding to ETA) through the surface energy balance equation. LST is a critical variable for surface energy components estimation. It was retrieved from the TM/ETM+ thermal infrared (TIR) band. Due to the high-quality and cloudy-free requirements for TM/ETM+ data selection as well as the overlapping cycle of TM/ETM+ sensor is 16 days, images on only five dates are available during 1971-2003 (model ran) " May 15, 2000, July 05, 2001, July 19, August 04 and September 21 in 2003. It is found that the climate conditions of 2000, 2001 and 2003 are wet, medium wet and dry, respectively. Therefore, the remote sensing-retrieved observations are noncontinuous in a limited number over time but contain multiple climate conditions. Aerodynamic resistance and surface resistance are two most important parameters in the Penman-Monteith equation. However, for forest area, the aerodynamic resistance is calculated by a function of wind speed in the model. Since transpiration and evaporation are separately calculated by the Penman-Monteith equation in the model, the surface resistance was divided into canopy surface resistance rsc and soil surface resistance rse. rsc is related to the plants transpiration and rse is related to the bare soil evaporation. The interception evaporation was not taken into account due to its negligible contribution to ET rate under a dry-canopy (no rainfall) condition. Based on the remote sensing-retrieved observations, rsc and rse were calibrated in the WaSiM-ETH model for both forest types: for deciduous forest, rsc = 150 sm−1, rse = 250 sm−1; for coniferous forest, rsc = 300 sm−1, rse = 650 sm−1. We also carried out sensitivity analysis on rsc and rse. The appropriate value ranges of rsc and rse were determined as (annual maximum): for deciduous forest, [100,225] sm−1 for rsc and [50,450] sm−1 for rse; for coniferous forest, [225,375] sm−1 for rsc and [350,1200] sm−1 for rse. Due to the features of the observations that are in a limited number but contain multiple climate conditions, the statistical indices for model performance evaluation are required to be sensitive to extreme values. In this study, boxplots were found to well exhibit the model performance at both spatial and temporal scale. Nush-Sutcliffe efficiency (NSE), RMSE-observations standard deviation ratio (RSR), percent bias (PBIAS), mean bias error (MBE), mean variance of error distribution (S2d), index of agreement (d), root mean square error (RMSE) were found as appropriate statistical indices to provide additional evaluation information to the boxplots. The model performance can be judged as satisfactory if NSE > 0.5, RSR ≤ 0.7, PBIAS < -±12, MBE < -±0.45, S2d < 1.11, d > 0.79, RMSE < 0.97. rsc played a more important role than rse in ETP and ETA estimation by the Penman-Monteith equation, which is attributed to the fact that transpiration dominates in ET. The ETP estimation was found the most correlated to the relative humidity (RH), followed by air temperature (T), relative sunshine duration (SSD) and wind speed (WS). Under wet or medium wet climate conditions, ETA estimation was found the most correlated to T, followed by RH, SSD and WS. Under a water-stress condition, there were very small correlations between ETA and each meteorological variable.
A sustainable development of forests and their ecosystem services requires the monitoring of the forests" state and changes as well as the prediction of their future development. To achieve the latter, eco-physiological forest growth models are usually applied. These models require calibration and validation with forestry reference data. This data includes forest structural parameters such as tree height or stem diameter which are easy to measure and can be used to estimate the core model parameters, i.e. the tree- biomass pools. The methods traditionally applied to derive the structural parameters are mainly manual and time-consuming. Hence, the in situ data acquisition is inefficient and limited in its ability to capture the vertical and horizontal variability in stand structure. Ground-based remote sensing bears the potential to overcome the limitations of the traditional methods. As they can be automated, ground-based remote sensing methods allow a much more efficient data acquisition and a larger spatial coverage. They are also able to capture forest structure in its three dimensions. Nevertheless, at present further research is required, in particular with respect to the practical integration of ground-based remote sensing data into forest growth models as well as regarding factors influencing the structural parameter retrieval from this data. Therefore, the goal of this PhD thesis was to investigate the influencing factors of two ground-based remote sensing methods (terrestrial laser scanning and hemispherical photography), which have not or only scarcely been studied to date. In addition, the use of forest structural parameters derived from these methods for the calibration of a forest growth model was assessed. Both goals were achieved. The results of this thesis could contribute significantly to a comprehensive assessment of ground-based remote sensing and its potential to derive the forest structural parameters. However, the use of these methods to calibrate forest growth models proved to be limited. An optimized data sampling design is expected to eliminate the major limitations, though. Furthermore, the combination of ground-based, airborne, and satellite remote sensing sensors was suggested to provide an optimized framework for the general integration of remotely sensed data into forest growth models. This combination of remote sensing observations at different scales will contribute greatly to a modern forest management with the purpose of warranting a sustainable forest development even under growing economic and ecological pressures.
Time series archives of remotely sensed data offer many possibilities to observe and analyse dynamic environmental processes at the Earth- surface. Based on these hypertemporal archives, which offer continuous observations of vegetation indices, typically at repetition rates from one to two weeks, sets of phenological parameters or metrics can be derived. Examples of such parameters are the beginning and end of the annual growing period, as well as its length. Even though these parameters do not correspond exactly to conventional observations of phenological events, they nevertheless provide indications of the dynamic processes occurring in the biosphere. The development of robust algorithms for the derivation of phenological metrics can be challenging. Currently, such algorithms are most commonly based on digital filters or the Fourier analysis of time series. Polynomial spline models offer a useful alternative to existing methods. The possibilities of using spline models in the analytical description of time series are numerous, and their specific mathematical properties may help to avoid known problems occurring with the more common methods for deriving phenological metrics. Based on a selection of different polynomial spline models suitable for the analysis of remotely sensed time series of vegetation indices, a method to derive various phenological parameters from such time series was developed and implemented in this work. Using an example data set from an intensively used agricultural area showing highly dynamic variations in vegetation phenology, the newly developed method was verified by a comparison of the results of the spline based approach to the results of two alternative, well established methods.
Arctic and Antarctic polynya systems are of high research interest since extensive new ice formation takes place in these regions. The monitoring of polynyas and the ice production is crucial with respect to the changing sea-ice regime. The thin-ice thickness (TIT) distribution within polynyas controls the amount of heat that is released to the atmosphere and has therefore an impact on the ice-production rates. This thesis presents an improved method to retrieve thermal-infrared thin-ice thickness distributions within polynyas. TIT with a spatial resolution of 1 km × 1 km is calculated using the MODIS ice-surface temperature and atmospheric model variables within the Laptev Sea polynya for the winter periods 2007/08 and 2008/09. The improvement of the algorithm is focused on the surface-energy flux parameterizations. Furthermore, a thorough sensitivity analysis is applied to quantify the uncertainty in the thin-ice thickness results. An absolute mean uncertainty of -±4.7 cm for ice below 20 cm of thickness is calculated. Furthermore, advantages and drawbacks using different atmospheric data sets are investigated. Daily MODIS TIT composites are computed to fill the data gaps arising from clouds and shortwave radiation. The resulting maps cover on average 70 % of the Laptev Sea polynya. An intercomparison of MODIS and AMSR-E polynya data indicates that the spatial resolution issue is essential for accurately deriving polynya characteristics. Monthly fast-ice masks are generated using the daily TIT composites. These fast-ice masks are implemented into the coupled sea-ice/ocean model FESOM. An evaluation of FESOM sea-ice concentrations is performed with the result that a prescribed high-resolution fast-ice mask is necessary regarding the accurate polynya location. However, for a more realistic simulation of other small-scale sea-ice features further model improvements are required. The retrieval of daily high-resolution MODIS TIT composites is an important step towards a more precise monitoring of thin sea ice and sea-ice production. Future work will address a combined remote sensing " model assimilation method to simulate fully-covered thin-ice thickness maps that enable the retrieval of accurate ice production values.
The main research question of this thesis was to set up a framework to allow for the identification of land use changes in drylands and reveal their underlying drivers. The concept of describing land cover change processes in a framework of global change syndrome was introduced by Schellnhuber et al. (1997). In a first step the syndrome approach was implemented for semi-natural areas of the Iberian Peninsula based on time series analysis of the MEDOKADS archive. In the subsequent study the approach was expanded and adapted to other land cover strata. Furthermore, results of an analysis of the relationship of annual NDVI and rainfall data were incorporated to designate areas that show a significant relationship indicating that at least a part of the variability found in NDVI time series was caused by precipitation. Additionally, a first step was taken towards the integration of socio-economic data into the analysis; population density changes between 1961 and 2008 were utilized to support the identification of processes related to land abandonment accompanied by cessation of agricultural practices on the one hand and urbanization on the other. The main findings of the studies comprise three major land cover change processes caused by human interaction: (i) shrub and woody vegetation encroachment in the wake of land abandonment of marginal areas, (ii) intensification of non-irrigated and irrigated, intensively used fertile regions and (iii) urbanization trends along the coastline caused by migration and the increase of mass tourism. Land abandonment of cultivated fields and the give-up of grazing areas in marginal mountainous areas often lead to the encroachment of shrubs and woody vegetation in the course of succession or reforestation. Whereas this cover change has positive effects concerning soil stabilization and carbon sequestration the increase of biomass involves also negative consequences for ecosystem goods and services; these include decreased water yield as a result of increased evapotranspiration, increasing fire risk, decreasing biodiversity due to landscape homogenization and loss of aesthetic value. Arable land in intensively used fertile zones of Spain was further intensified including the expansion of irrigated arable land. The intensification of agriculture has also generated land abandonment in these areas because less people are needed in the agricultural labour sector due to mechanization. Urbanization effects due to migration and the growth of the tourism sector were mapped along the eastern Mediterranean coast. Urban sprawl was only partly detectable by means of the MEDOKADS archive as the changes of urbanization are often too subtle to be detected by data with a spatial resolution of 1 km-². This is in line with a comparison of a Landsat TM time series and the NOAA AVHRR archive for a study area in the Greece that showed that small scale changes cannot be detected based on this approach, even though they might be of high relevance for local management of resources. This underlines the fact that land degradation processes are multi-scale problems and that data of several spatial and temporal scales are mandatory to build a comprehensive dryland observation system. Further land cover processes related to a decrease of greenness did not play an important role in the observation period. Thus, only few patches were identified, suggesting that no large-scale land degradation processes are taking place in the sense of decline of primary productivity after disturbances. Nevertheless, the land cover processes detected impact ecosystem functioning and using the example of shrub encroachment, bear risks for the provision of goods and services which can be valued as land degradation in the sense of a decline of important ecosystem goods and services. This risk is not only confined to the affected ecosystem itself but can also impact adjacent ecosystems due to inter-linkages. In drylands water availability is of major importance and the management of water resources is an important political issue. In view of climate change this topic will become even more important because aridity in Spain did increase within the last decades and is likely to further do so. In addition, the land cover changes detected by the syndrome approach could even augment water scarcity problems. Whereas the water yield of marginal areas, which often serve as headwaters of rivers, decreases with increasing biomass, water demand of agriculture and tourism is not expected to decline. In this context it will be of major importance to evaluate the trade-offs between different land uses and to take decisions that maintain the future functioning of the ecosystems for human well-being.
Die Beobachtung und Bewertung von Wäldern ist eins der zentralen Themen der Fernerkundung. Wälder sind auf der Erde die größten Speicher von Biomasse und damit, neben den Ozeanen, die größte Senke für Kohlendioxid. Eine genaue Kenntnis über Zusammensetzung, Zustand und Entwicklung der Wälder ist wegen ihrer vielfältigen Funktionen und ihres großen Anteils an der Landesfläche von großem wissenschaftlichem und gesellschaftlichem Wert. Eine flächen-deckende detaillierte Beobachtung ist nur mit fernerkundlichen Mitteln möglich. Eine vielversprechende moderne Technik für hochauflösende Waldfernerkundung ist luftgestütztes Laser-¬scanning. Für die Arbeit stand ein Laserscanner-Datensatz aus dem Idarwald bei Morbach in Einzelpunkten und als Wellenformdatensatz zur Verfügung, der zur Ableitung von strukturellen Waldparametern genutzt wurde. Als wichtigster Bestandsstrukturparameter wurde die Baumhöhe sowohl aus Einzelpunktdaten als auch aus gerasterten Bilddaten flächendeckend mit hoher Genauigkeit abgeleitet. Die Kronenuntergrenzen konnten anhand der Wellenformdaten identifiziert werden und stimmten ebenfalls in hoher Genauigkeit mit Geländemessungen überein. Aus Baumhöhen und Höhe der Kronenuntergrenzen konnte die jeweilige Kronenlänge bestimmt werden. Eine größere Herausforderung ist die Bestimmung der Anzahl der Bäume pro Hektar. Während die einzelnen Kronen älterer Nadelbäume gut erkennbar sind, lassen sich Laubbäume und jüngere Nadelbäume nur schwer identifizieren. Trotzdem konnte mit Hilfe eines adaptiven Moving-Window-Ansatzes eine hohe Übereinstimmung mit im Gelände bestimmten Stammzahlen erzielt werden. Aus dem Anteil der Laserstrahlen, die im Bestand den Boden erreichen, können der Kronenschlussgrad und der Blattflächenindex bestimmt werden. Beide Größen sind für den Strahlungstransfer im Bestand und für ökologische Fragestellungen von Bedeutung und konnten ebenfalls flächendeckend und mit hoher Genauigkeit gemessen werden. Eng verknüpft mit dem Blattflächenindex sind die Biomasse und der Holzvorrat. Der Holzvorrat kann zwar nicht direkt aus den Laser-¬scannerdaten abgeleitet werden, da aber enge Beziehungen zu Baumhöhe und Stammzahl bestehen, kann er aus diesen statistisch abgeleitet werden. Auch die Biomasse wurde indirekt bestimmt: aus den Baumhöhen und dem Bedeckungsgrad. Die detaillierteste Charakterisierung von Waldbeständen kann durch Kombination unterschiedlicher Datensätze erreicht werden. Neben dem Laserscanningdatensatz stand auch ein hyperspektrales Bild des Untersuchungsgebiets zur Verfügung. Um diese zu kombinieren, wurde aus den Wellenformen die jeweils über der Fläche eines Hyperspektralpixels zurückgestreute Laserenergie in Höhenschritten von 0.5 m berechnet. Diese Höhenprofile zeigen die Position und Dichte der Baumkronen. Der kombinierte Datensatz wurde für eine Klassifikation zwischen Fichten und Douglasien in jeweils mehreren Altersstufen verwendet und konnte gegenüber dem Hyperspektralbild alleine eine deutliche Verbesserung der Klassifikationsgenauigkeit erzielen. Als weitere Methode, die Vorteile von hyperspektraler Fernerkundung mit denen von Laser-scanning zu verbinden, wurden Methoden zur Verwendung von Laserscanning für die Invertierung von zwei Reflexionsmodellen entwickelt und getestet. Da mit Laserscanning Größen bestimmt werden können, die aus einem Reflexionsspektrum nicht eindeutig ableitbar sind, können die Daten verwendet werden, um den Parameterraum bei der Invertierung zu verkleinern und damit die Invertierung zuverlässiger zu machen.
Das Ziel dieser Forschungsarbeit liegt in der Entwicklung einer innovativen Klassifikationsstrategie zur satellitengestützten Forstinventur in einem europäischen Mittelgebirgsraum. Über die Ableitung von thematischen Karten der flächenscharfen Verbreitung von fünf Baumartengruppen (Eiche, Buche, Fichte, Douglasie und Kiefer) sowie drei Entwicklungsphasen (Qualifizierung, Dimensionierung und Reife) werden wichtige für eine nachhaltige Bewirtschaftung von Wäldern erforderliche Grundlagendaten bereitgestellt. rnDie nachhaltige Bewirtschaftung der Vielfachfunktionen von Wäldern (Nutz-, Schutz- und Erholungsfunktionen) sowie der steigende Informationsbedarf in Folge nationaler und internationaler Monitoring- und Berichtspflichten (u.a. Montréal Prozess und Kyoto Protokoll) erfordern aktuelle und flächendeckende Informationen über den Zustand der Wälder. In diesem Kontext können fernerkundliche Daten und Methoden zur Unterstützung konventioneller terrestrischer Verfahren zum Einsatz kommen.rnDas Untersuchungsgebiet dieser Studie umfasst den südlichen und östlichen Teil der rheinland-pfälzischen Eifel mit einer Fläche von mehr als 5200 km-², davon rund 2080 km-² bewaldet. Die naturräumliche Heterogenität, die wuchsklimatischen Unterschiede, die Variabilität von Relief und Topographie, die große Zahl vorkommender Baumarten sowie die kulturhistorische Waldentwicklung in der Eifel stellen eine besondere Herausforderung für satellitengestützte Inventurmethoden dar.rnDurch die bevorzugte Verwendung von Referenzdaten aus der unmittelbaren räumlichen Umgebung eines zu klassifizierenden Bereichs wird bei der Parametrisierung des Klassifikationsansatzes die jeweilige naturräumliche und wuchsklimatische Charakteristik berücksichtigt. Der Vergleich dieses räumlich adaptiven Klassifikationsansatzes mit einer konventionellen Maximum-Likelihood Klassifikation zeigt, dass eine Verbesserung der Klassifikationsgenauigkeit um 12 Prozentpunkte erreicht werden konnte. Die Adaptierung der Klassifikationsstrategie an die naturräumlichen und wuchsklimatischen Bedingungen sowie die Anpassung an bestehende Erhebungsmethoden und Datenorganisation bilden die Grundlage für eine erfolgreiche Anwendung des Verfahrens in einem heterogenen Mittelgebirgsraum. Die hohe erreichte Gesamtgenauigkeit des Klassifikationsergebnisses von rund 74% (über 87% für die fünf Hauptbaumarten) erlaubt die Einbindung der Methode in operationelle Erhebungsverfahren zur Unterstützung der terrestrischen Forstinventur.
Die polare Kryosphäre stellt einen Schlüsselfaktor für die Erforschung des Klimawandels dar. Insbesondere das Meereis und seine Schneebedeckung, die sich durch eine äußerst hohe und Zeitskalen-übergreifende Sensitivität gegenüber atmosphärischen Einflüssen auszeichnen, können als diagnostische Parameter für die Abschätzung von Veränderungen im Klimasystem herangezogen werden. Die komplexen Rückkopplungsmechanismen, durch die das Meereis mit der globalen Zirkulation der Atmosphäre und des Ozeans in Wechselwirkung steht, werden durch eine zusätzliche Schneeauflage deutlich verstärkt. Insofern tragen die saisonalen Veränderungen der physikalischen Eigenschaften des Schnees, und insbesondere der Beginn der Schneeschmelze, massgeblich zur lokalen und regionalen Energiebilanz sowie zur Meereismassenbilanz bei. In dieser Arbeit wird nun erstmals auf der Basis langjähriger Daten der satellitengestützten Mikrowellenfernerkundung, in Kombination mit Feldmessungen aus dem Weddellmeer während des Sommers 2004/2005, die Charakteristik der sommerlichen Schmelzperiode auf antarktischem Meereis untersucht. Die sommertypischen Prozesse zeichnen sich hier durch deutliche Unterschiede im Vergleich zu arktischem Meereis aus. Wie die Messungen vor Ort zeigen, kommt es während des antarktischen Sommers nicht zu einem kompletten Abschmelzen des Schnees. Vielmehr dominieren ausgeprägte Schmelz-Gefrier-Zyklen im Tagesgang, die eine Abrundung und Vergrösserung der Schneekristalle sowie die Bildung interner Eisschichten verursachen. Dies führt radiometrisch zu Mikrowellensignalen, deren Erfassung im Vergleich zu bestehenden Schmelzerkennungs-Methoden neue Ansätze erfordert. Durch den Vergleich von zeitlich hoch aufgelösten in-situ Messungen der physikalischen Schneeeigenschaften mit parallel dazu erfassten Satellitendaten, sowie durch eine Modellierung der mikrowellenradiometrischen Eigenschaften der Schneeauflage, konnte ein neuer Indikator entwickelt werden, über den das Einsetzen der typischen sommerlichen Schmelzperiode auf antarktischem Meereis identifiziert werden kann. Der DTBA-Indikator beschreibt die Tagesschwankung der radiometrischen Eigenschaften des Schnees und zeichnet sich durch ein Werteverhalten aus, das eine eindeutige Hervorhebung der Sommerphase innerhalb eines saisonalen Zyklus erkennen lässt. Der Indikator wurde verwendet, um mittels des neu entwickelten Schwellwertalgorithmus MeDeA das Einsetzen der sommerlichen Schmelzperiode für das gesamte antarktische Meereisgebiet zu bestimmen. Durch die Anwendung der neuen Methode auf die langjährigen Reihen der Satellitenmessungen konnte ein umfassender Datensatz erstellt werden, der für den Zeitraum von 1988 bis 2006 die räumliche und zeitliche Variabilität des Einsetzens der sommerlichen Schmelzperiode auf antarktischem Meereis beinhaltet. Die Ergebnisse zeigen, dass im Untersuchungszeitraum keine signifikanten Trends im Beginn des Schmelzens der Schneeauflage festzustellen sind, und dass das Schmelzen im Vergleich zur Arktis deutlich schwächer ausgeprägt ist. Eine Untersuchung der atmosphärischen Antriebe durch die Auswertung meteorologischer Reanalysen zeigt den grundlegenden Einfluss der zirkumpolaren Strömungsmuster auf die interannualen Schwankungen des Einsetzens und der Stärke der sommerlichen Schneeschmelze.
It has been the overall aim of this research work to assess the potential of hyperspectral remote sensing data for the determination of forest attributes relevant to forest ecosystem simulation modeling and forest inventory purposes. A number of approaches for the determination of structural and chemical attributes from hyperspectral remote sensing have been applied to the collected data sets. Many of the methods to be found in the literature were up to now just applied to broadband multispectral data, applied to vegetation canopies other than forests, reported to work on the leaf level or with modelled data, not validated with ground truth data, or not systematically compared to other methods. Attributes that describe the properties of the forest canopy and that are potentially open to remote sensing were identified, appropriate methods for their retrieval were implemented and field, laboratory and image data (HyMap sensor) were acquired over a number of forest plots. The study on structural attributes compared statistical and physical approaches. In the statistical section, linear predictive models between vegetation indices derived from HyMap data and field measurements of structural forest stand attributes were systematically evaluated. The study demonstrates that for hyperspectral image data, linear regression models can be applied to quantify leaf area index and crown volume with good accuracy. For broadband multispectral data, the accuracy was generally lower. The physically-based approach used the invertible forest reflectance model (INFORM), a combination of well established sub-models FLIM, SAIL and LIBERTY. The model was inverted with HyMap data using a neural network approach. In comparison to the statistical approach, it could be shown that the reflectance model inversion works equally well. In opposition to empirically derived prediction functions that are generally limited to the local conditions at a certain point in time and to a specified sensor type, the calibrated reflectance model can be applied more easily to different optical remote sensing data acquired over central European forests. The study on chemical forest attributes evaluated the information content of HyMap data for the estimation of nitrogen, chlorophyll and water concentration. A number of needle samples of Norway spruce were analysed for their total chlorophyll, nitrogen and water concentrations. The chemical data was linked to needle spectra measured in the laboratory and canopy spectra measured by the HyMap sensor. Wavebands selected in statistical models were often located in spectral regions that are known to be important for chlorophyll detection (red edge, green peak). Predictive models were applied on the HyMap image to compute maps of chlorophyll concentration and nitrogen concentration. Results of map overlay operations revealed coherence between total chlorophyll and zones of stand development stage and between total chlorophyll and zones of soil type. Finally, it can be stated that the hyperspectral remote sensing data generally contains more information relevant to the estimation of the forest attributes compared to multispectral data. Structural forest attributes, except biomass, can be determined with good accuracy from a hyperspectral sensor type like HyMap. Among the chemical attributes, chlorophyll concentration can be determined with good accuracy and nitrogen concentration with moderate accuracy. For future research, additional dimensions have to be taken into account, for instance through exploitation of multi-view angle data. Additionally, existing forest canopy reflectance models should be further improved.
In past years, desertification and land degradation have been acknowledged as a major threat to human welfare world-wide, and their environmental and societal implications have sparked the formulation of the UN Convention to Combat Desertification (UNCCD). Any measure taken against desertification, or the design of dedicated early warning systems, must take into account both the spatial and temporal dimensions of process driving factors. Equally important, past and present reactions of ecosystems to physical and socio-economical disturbances or management interventions need to be understood. In this context, remote sensing and geoinformation processing support the required assessment, monitoring and modelling approaches, and hence provide an essential contribution to the scientific component of the struggle against desertification. Supported by DG Research of the European Commission, the Remote Sensing Department of the University of Trier convened RGLDD to promote scientific exchange between specialists working on the interface of remote sensing, geoinformation processing, desertification/land degradation research and its socio-economic implications. Although targeted at the scientific community, contributions with application perspectives were of crucial importance and both an overview of the current state of the art as well as operational opportunities were presented. Hosted at the Robert-Schuman Haus in Trier, the conference gained widespread attention and attracted an international audience from all parts of the world, which underlines the global dimension of land degradation and desertification processes. Based on a rigorous review of submitted abstracts, more than 100 contributions were accepted for oral and poster presentation, which are found in these proceedings edition in full paper form. Please note: This document is optimised for screen resolution, to receive a high-resolution version please contact the editors.
Two areas were selected to represent major process regimes of Mediterranean rangelands. In the County of Lagads (Greece), situated east of the city of Thessaloniki, livestock grazing with sheep and goats is a major factor of the rural economy. In suitable areas, it is complemented by agricultural use. The region of Ayora (Spain) is located west of the city of Valencia. It is one of regions most affected by fires in Spain. First of all, long time series of satellite data were compiled for both regions on the basis of Landsat sensors, which cover the time until 1976 (Ayora) and 1984 (Lagadas) with one image per year. Using a rigorous processing scheme, the data were geometrically and radiometrically corrected Specific attention was given to an exact sensor calibration, the radiometric intercalibration of Landsat-TM and "MSS. Proportional cover of photosynthetically active vegetation was identified as a suitable quantitative indicator for assessing the state of rangelands. Using Spectral Mixture Analysis (SMA) it was inferred for all data sets. The extensive data base procured this way enabled to map fire events in the Ayora area based on sequential diachronic sets and provide fire dates, perimeter as well as fire recurrence for each pixel. The increasing fire frequency in the past decades is in large parts attributed to the accelerated abandonment of the area that leads to an encroachment of shrublands and the accumulation of combustible biomass. On the basis of the fire mapping results, a spatial and temporal stratification of the data set allowed to asses plant recovery dynamics on the landscape level through linear trend analysis. The long history of fire events in the Mediterranean frequently leads to processes of auto-succession. Following an initial dominance of herbaceous vegetation this commonly leads to similar plant communities as the ones present before the fire. On a temporal axis, this results in typical exponential post-fire trajectories which could also be shown in this study. The analysis of driving factors for post-fire dynamics confirmed the importance of aspect and slope. Locations with lower amounts of solar irradiation and favourable water supply yielded faster recovery rates and higher post-fire vegetation cover levels. In most cases, the vegetation cover levels observed before the fire were not reached within the post-fire observation period. In the area of Lagadas, linear trend analysis and additional statistical parameters were used to infer a degradation index. This could be used to illustrate a complex pattern of stability, regeneration and degradation of vegetation cover. These different processes and states are found in close proximity and are clearly determined by topography and elevation. Following a sequence of analyses, it was found that in particular steep, narrow valleys show positive trends, while negative trends are more abundant on plain or gently undulating areas. Considering the local grazing regime, this spatial differentiation was related to the accessibility of specific locations. Subsequently, animal numbers on community level were used to calculate efficient stocking rates and assess the temporal development of their relation with vegetation cover. This calculation of temporal trajectories illustrated that only some communities show the expected negative relation. To the contrary, a positive relation or even changing relation patterns are observed. This signifies recent concentration and intensification processes in the grazing scheme, as a result of which animals are kept in sheds, where additional feedstuffs are provided. In these cases, free roaming of livestock animals is often confined to some hours every day, which explains the spatial preference of easily accessible areas by the shepherds. Beyond these temporal trends, it was analysed whether the grazing pattern is equally reflected in a spatial trend. Making use of available geospatial information layers, the efforts required to reach each location was expressed as a cost. Then, cost zones could be defined and woody vegetation cover as a grazing indicator could be inferred for the different zones. Animal sheds were employed as starting features for this piospheric analysis, which could be mapped from very high spatial resolution Quickbird image data. The result was a clearly structured gradient showing increasing woody vegetation cover with increasing cost distance. On the basis of these two pilot studies, the elements of a monitoring and interpretation framework identified at the beginning of the work were evaluated and a formal interpretation scheme was presented.
Soil and water conservation are cross-sectional assignments. The respective objectives of the individual interest groups cause conflicts of use and lead to different assessments of the soil's potential. Necessary decisions and the practical implementation of soil and water conservation measures require the use of data. These data, which are both spatial and temporal, characterise past, present and, in the case of predictions, also future environmental conditions. The multitude of relevant data necessitates the use of geographic information systems as an instrument for successful resource management. With the use of problem-oriented case studies, it was possible to show that an improved understanding of the system is necessary for both optimisation of the site-specific resource management within the framework of Precision Farming and for the assessment of local to regional conflicts of use with regard to land usage and soil and water conservation. By changing the method, sufficient respective measures regarding documentation, prevention and risk assessment were able to be introduced and implemented. With the objective of practical implementation of a sustainable resource management, the possibilities of short- to long-term initiation of self-organised systems through the networking of available (geo-)information as well as the respective interest groups involved in the conflict of use formed the focal point of this investigation. The creation of networks linking agriculture, water extractors and nature conservation promotes necessary synergies and emergences, due to increased communication. Not the conveyance of knowledge alone, but rather new forms of understanding cause the interest groups involved to change their behaviour, thus facilitating efficient resource management for the interests of soil and water conservation.
Considering actual climatic and land use changes the problem of available water resources or the estimation of potential flood risks gain eco-political and economical relevance. Adequate assessments, thus, require precise process-based hydrological knowledge. Spatially distributed hydrological modelling enables a both abstractive and realistic description of hydrological processes, and therefore contributes to the understanding of the hydrological system- responses. Referring to the example of the mesoscale Ruwer basin (a tributary to the Mosel river), a modified version of the distributive modelling system PRMS/MMS (Precipitation Runoff Modeling System/Modular Modeling System) is applied to calculate spatially and temporally explicit water budgets. To achieve modelling results as precise as possible, integration of detailed land use information (spatial distribution of the existing land use classes, crop- and site-specific growth patterns) is necessary. This information is derived here by analysis of multitemporal, geometrically and radiometrically pre-processed Landsat TM-data. This enables separation of different land use classes and differentiated quantification of the leaf area index (LAI). The LAI is estimated by a spectral unmixing approach using statistically optimized endmember sets, referring to the example of winter grain and grassland plots. As a result, numerical inputs (coefficients for calculating evapotranspiration, interception storages) and extracted non-numerical (classified) information can be provided for hydrological modelling. The version of PRMS applied in this study allows important land use terms to be parameterized in high temporal resolution. Using model input derived from the available satellite data, simulation results are obtained that prove to be realistic compared to gauge data and with respect to their spatial differentiation. Results differ significantly from those obtained by using parameters from literature or by experience without distinguishing specific and site-dependent growth patterns. It can be concluded that the quality of modelling results notably improves by integration and quantitative analysis of remote sensing data; thus, these methods are a significant contribution to physically-based hydrological modelling.